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A sequential machine vision procedure for assessing

paper impurities

Abstract

We present a sequential, two-step procedure based on machine vision for de-
tecting and characterizing impurities in paper. The method is based on a pre-
liminary classification step to differentiate defective paper patches (i.e.: with
impurities) from non-defective ones (i.e.: with no impurities), followed by a
thresholding step to separate the impurities from the background. This ap-
proach permits to avoid the artifacts that occurs when thresholding is applied
to paper samples that contain no impurities. We discuss and compare different
solutions and methods to implement the procedure and experimentally validate
it on a datasets of 11 paper classes. The results show that a marked increase in
detection accuracy can be obtained with the two-step procedure in comparison
with thresholding alone.

Keywords: Machine vision, paper, image processing

1. Introduction

Paper may contain particles of various types. In most cases these represent
defects and impurities that need to be avoided; in other cases they are purpose-
fully inserted in the paper to give the final product a peculiar visual appearance.
In either situation the papermaking industry is increasingly concerned with the
development of quick and reliable systems to detect and characterize such in-
clusions automatically. The growing attention towards environmentally friendly
production policies and the consequent rise in production of recycled paper [14]
– intrinsically more prone to contain defects – has rendered this need more and
more compelling. The detection and characterization of particles can also help
to determine the source of impurities in the production process, which can be
subsequently amended and eliminated. This may reduce the use of chemicals in
the bleaching phase, with beneficial effects on the environment. When speaking
of defects, specific international standards [1, 2] provide definitions and quan-
titative means to assess their extent and the quality of the paper. Otherwise,
when particles are actually desirable features of the product, their control may
be performed in compliance with internal norms of the companies.

In the last twenty years, automatic visual inspection has benefited from
the steady development of machine vision, whose applications now embrace a
wide range of very diverse industrial products, such as wood [10, 17], textile [9],
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natural stone [7], exterior car parts [13] as well as food and agricultural products
[3, 18], to cite some. In the papermaking industry, applications of machine
vision are not uncommon and have covered, thus far, many problems like curl
estimation [38], printability analysis [24], control of stripes and holes [29], sorting
of waste paper for recycling [34], recognition of paper manufacturer and lot for
forensic comparison [4] and characterization of fibre properties [11, 21].

Among the various applications, the identification of impurities has received
significant attention, since such defects greatly affect the quality of final prod-
ucts. Within this field, Torniainen et al. [39] described an apparatus to measure
dirt points on wet and dry pulp sheets through transmitted light reporting ac-
curacy from 75% to 90%. Likewise, Duarte et al. [12] proposed a system for
dirt inspection on pulp and paper based on hiearchical image segmentation.
Later on, Campoy et al. [8] presented ‘InsPulp-I’, an inspection system for the
pulp industry. More recently, interesting results have been obtained within the
project ‘PulpVision’ [33], the aim of which is to detect dirt particles in pulp and
classify them into different categories (i.e.: bark, shives, etc.).

The literature shows that the common strategy to attack the problem con-
sists of a preliminary image thresholding step to separate whatever kind of
contraries from the background, followed by further analysis to classify them
into one of some predefined categories. For such a strategy to work correctly,
one has to implicitly assume that the paper patch under control does actually
contain some type of particles; otherwise, if there are no particles at all, any
image thresholding procedure is bound to produce unpredictable results, as we
show in Fig. 1. To solve this problem, we propose a novel approach in which we
first separate paper areas into defective and non-defective, then proceed to fur-
ther analyse only the defective ones. Experimentally, we show that the method
can provide an average increase in detection accuracy of about 25%.

In the remainder of the paper we first give a general overview of the method
(Sec. 2), followed by a description of the materials and image acquisition devices
used in the study (Sec. 3). In Sec. 4 we present and compare different solutions
to implement the two steps of the method. The experimental activity is detailed
in (Sec. 5), followed by the results (Sec. 6) and concluding considerations (Sec.
7). For the purpose of reproducible research, all the data and functions used in
this study are available to the public [32].

2. Overview of the procedure

Our approach consists of the following two steps: 1) preliminary classifi-
cation of surface patches into defective and non-defective; 2) analysis of the
defective patches through image thresholding. This solution avoids the prob-
lems that arise when paper samples contain no defects at all. In this case direct
image analysis through thresholding usually produces unpredictable and utterly
unreliable results, as shown in Fig. 1.

The overall procedure is summarized in Fig. 2. The sample to analyse (Fig.
2a) is first subdivided into a set of non-overlapping inspection patches of equal
area (Fig. 2b). The size of the patches can be adjusted to fit specific application
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Before thresholding After thresholding

Figure 1: Effects of thresholding on a defective (first row) and a non-defective
(second row) paper patch.

needs. Then each patch is classified as defective or non-defective through a
supervised classification procedure (Fig. 2c). For this step we propose a texture-
based approach. Possible implementations are described in Sec. 4.1. Finally, an
image thresholding step permits to assess the extension of the defects (Fig. 2d).
Different thresholding methods are discussed in Sec. 4.2. In the experiments
(Sec. 5) we assess the accuracy of the methods proposed for classification and
thresholding.

3. Materials

In this study we considered 11 different classes of paper. The characteristics
of each class are reported in Tab. 1. For each class we selected a set of specimens
of dimension 150 mm × 150 mm and acquired them at a resolution of 1600 pixels
× 1600 pixels, which corresponds to a spatial resolution of approximately 370
dpi.

3.1. Imaging system

The imaging system (Fig. 3) is composed of one dome illuminator (Monster
Dome Light 18.25”), one industrial CMOS camera equipped with a 12 mm
fixed focal length lens (Pentax H1214-M), one backlight illuminator, one base
and three pins to support the dome. Inspection can be performed through either
transmitted light or reflected light: when working by reflected light, the dome is
on and the backlight illuminator is off; when operating by transmitted light the
reverse occurs. In either case illumination is provided by LED lights. For each
type of paper (see Tab. 1) the most appropriate inspection method is selected
on the basis of the intrinsic properties of the paper (i.e.: density) and of the
particles (i.e.: transparency / opacity).

From the acquired images, and for each class of paper, we manually cropped
48 image patches containing no impurities and 48 patches with impurities of
different shape and extension. Each of these patches has a resolution of 128 ×
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(a) Sample to analyse (b) Inspection areas

(c) Detection of defective ar-
eas

(d) Separation of the impu-
rities from the background

Figure 2: The overall procedure at a glance.

128 pixels. In the experiments they simulate the inspection areas into which
a paper sample is subdivided (see Fig. 2b). For each defective patch a binary
ground truth of the relevant impurities has been manually determined and cross-
validated by two human experts. As a result, the dataset contains 144 images
per class, therefore a total of 1584 images. For every class Tab. 1 reports three
images of each of the defective, non defective and ground truth group. The
dataset comprises a wide enough range of inclusions as for shape, extensions
and type.

4. Methods

The two core steps of our approach belong to two classic problems of image
analysis, namely classification and thresholding. Both have been investigated
at length and several solutions have been proposed. Yet their conversion into
industrial applications is rarely straightforward. In the industry we need meth-
ods that are not only accurate and fast, but also conceptually simple, robust
and easy to implement. In the following sections we discuss different solutions
that comply with these requirements.

4.1. Classification

The aim of this step is to design a two-class classifier capable of discriminat-
ing between defective and non-defective paper patches. This involves the choice
of an appropriate classifier and the definition of suitable image descriptors.
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.

Figure 3: The imaging system: 1) base; 2) backlight illuminator; 3) paper
specimen; 4) dome illuminator; 5) digital camera

The selection of a proper classifier is the result of a trade-off among various
factors, mainly accuracy, computational demand and robustness. Here we opted
for the robust and simple 1-NN with L2 distance. The ease of implementation,
as well as the absence of tuning parameters, make the method particularly
appealing for industrial applications. In the specific problem studied here, this
method also proved very accurate, as shown in Sec. 6. Preliminary experiments
showed higher accuracy of this method in comparison with linear and SVM
classifiers. The interested reader will find the extended results the accompanying
website [32].

Our approach to image classification is texture-based: we consider the seven
image descriptors detailed in Secs. 4.1.1 – 4.1.5 and summarized in Tab. 2.
All the methods are rotation invariant, since in principle defects can occur at
any orientation. In the remainder of the paper let I indicate a grey-scale image
quantized into L intensity values.

4.1.1. Histograms of equivalent patterns

Histograms of Equivalent Patterns (HEP) is a family of texture descriptors
[16] which includes very popular methods such as Local Binary Patterns (LBP)
and Improved Local Binary Patterns (ILBP), as well as the more recent Binary
Gradient Contours (BGC). Common features of these descriptors are the ease
of implementation, the low computational demand and the high discrimination
accuracy.

Local Binary Patterns (LBP) have been among the most outstanding texture
descriptors of the last decade. The basic version of LBP (LBP3×3) considers
the 256 possible binary patterns that can be defined in a 3 × 3 neighbourhood
of pixels when thresholded at the value of the central pixel. The rotation-
invariant version used here (LBPri

8,1) is achieved by linearly interpolating pixels
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Table 1: Summary list of the paper samples used in the experiments.

Product
Non

defective
samples

Defective
samples

Ground
truth

Illumi-
nation

Density
(g/m2)

1 / BDP01 TL 101

2 / BFT01 TL 98

3 / BRG01 RL 610

4 / BRG02 RL 917

5 / BTN01 RL 141

6 / FLR01 TL 98

7 / FLR02 TL 94

8 / FVN01 TL 86

9 / FVN02 RL 89

10 / GLA01 TL 203

11 / ZPB01 RL 80

NOTE: TL = transmitted light; RL = reflected light

on a circular neighbourhood and regrouping the binary patterns that are rotated
versions of the same pattern – see Ref. [30] for the details. The method returns
36 features.

ILBP [22] is a variation of LBP in which the neighbourhood is thresholded
at the average grey value. In this case the central pixel takes part in the def-
inition of the binary pattern, which gives 511 possible binary patterns for the
basic version (ILBP3×3). The number of features reduces to 71 in the rotation
invariant version (ILBPri

8,1).
Binary gradient contours (BGC) are based on pairwise comparison of adja-

cent pixels belonging to closed paths traced along the periphery of the 3 × 3
neighbourhood [15]. The version used here (BGC1) employs the eight peripheral
pixels of the 3 × 3 window; a binary pattern is obtained by thresholding each
pixel of the periphery at the value of the adjacent one. The rotation-invariant
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Table 2: Summary of the descriptors used in the experiments

Name Version Acronym No. of
features

Ref.

Local Binary Patterns (8, 1) rot. inv. LBPri
8,1 36 [30]

Improved Local Binary Patterns (8, 1) rot. inv. ILBPri
8,1 71 [22]

Binary Gradient Contours (8, 1) rot. inv. BGCri
8,1 35 [15]

Gabor filters 4 freqs., 6 ornts. Gabor4,6 48 [28]
Gabor filters 6 freqs., 8 ornts. Gabor6,8 96 [28]
Co-occurrence matrices 4 dir., d = 1 GLCM1 10 [20]
Co-occurrence matrices 4 dir., d = 2 GLCM2 10 [20]
Granulometry Linear elem. G 26 [19]
Variogram 4 dir., 20 values V 20 [19]

version (BGCri
8,1) is obtained the same way as for LBP and ILBP, and produces

35 features.

4.1.2. Co-occurrence matrices

Grey-level co-occurrence matrices (GLCM) are among the most established
texture descriptors. They estimate the joint probability of the grey levels of
pixels separated by a vector of given length and orientation. For each displace-
ment vector a set of statistical features is usually extracted from the resulting
co-occurrence matrices. In his original paper Haralick et al. [20] proposed 14
features – these however are rarely used together due to the high correlation
among many of them. Herein we used five, namely: contrast, correlation, en-
ergy, entropy and homogeneity. Our implementation guarantees that each of
these features is in the [0, 1] interval. This way we assure that in the classifica-
tion phase each feature weighs the same. As for the displacement vectors, we
used the following: (0, d), (−d, d), (d, 0) and (−d,−d); with d = {1, 2}. Each
value of d therefore generates four orientation-dependent co-occurrence matri-
ces and 20 features. To obtain invariance against rotation we computed the
average and range of the features, as suggested in Ref. [20]. This reduce to 10
the number of features for a given d.

4.1.3. Gabor filters

Gabor filters measure the response of an image at different frequencies and
orientations. Mathematically, they are two-dimensional sinusoids modulated
by a Gaussian envelope. Gabor filtering is reputed one of the most effective
approaches for image classification and retrieval [28]. It has been suggested
that the effectiveness of the method is to be ascribed to the aptitude of the
filters to reproduce the behaviour of simple cells in the visual cortex – see, for
instance, Ref. [40]. Image analysis through Gabor filters requires the design of a
filter bank that suits the needs of the specific application domain. This is about
setting the proper values for the filters’ parameters: number of frequencies,
number of orientations, maximum frequency, width and length of the Gaussian
envelope (parameters η and γ), and frequency ratio. In our implementation
we used two filter banks: one with four frequencies and six orientations, and
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the other with six frequencies and eight orientations. In both cases we set:
max frequency = 0.327, η = 0.5, γ = 0.5, frequency ratio = half-octave, as
recommended by Bianconi and Fernández [6]. Image features are the mean and
standard deviation of the absolute value of the transformed images. This gives
4 × 6 × 2 = 48 and 6 × 8 × 2 = 96 features, respectively. Rotation invariance
is obtained through DFT normalization, as suggested by Lahajnar and Kovaici
[27].

4.1.4. Granulometry

In materials science granulometry refers to the size distribution in a col-
lection of grains, which is estimated by forcing the material to pass through
a set of sieves of increasing size. In the image analysis transposition of this
concept, sieves are morphological opening operators, and mass is the sum of
the pixels values resulting from each step. The normalised granulometric curve
of an image I is a plot of Vol[φλ(I)]/Vol(I) versus λ, where φ represents the
opening operator and λ is the characteristic size of the opening element [19]. In
our implementation we used four linear structuring elements with orientations
{0◦, 45◦, 90◦, 135◦} and dimension ranging from -50 to 50 pixels by steps of four
(a negative value indicate a closing). To obtain rotationally-invariant features we
averaged the four granulometry vectors corresponding to each direction, which
gives 26 features.

4.1.5. Variogram

The variogram is the expected value of the squared increment of grey levels
between two pixels as a function of their distance. In formulas we have

V(x1,x2) =
1

2
E
{

[I(x1)− I(x2)]
2
}

(1)

where x1 and x2 are two generic pixels of the image; E is the expected value.
In the experiments, we considered four variograms corresponding to the same
relative displacements used for co-occurrence matrices (Sec. 4.1.2). For rotation
invariance we computed the average variogram over the four displacements,
which gives a feature vector of dimension 20.

4.2. Thresholding

Thresholding is the process of determining a value k that transforms a grey-
scale image I into a binary image the two parts of which correspond to intensity
values > k or ≤ k. We conventionally refer to the two parts as foreground

and background, respectively. In this study we want to determine the value
that best separates paper impurities (background) from the foreground. The
reader interested in a broad review on thresholding will find useful references
in Refs. [36, 37]. Herein we considered five methods among the most used
in practice (see Tab. 3). They all take as input the first-order probability
distribution (histogram) of grey levels, and are therefore invariant to any spatial
redistribution of pixels in the image. All the methods are also parameter-free,
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computationally light and easy to implement. Before describing them in detail
in the following subsections, let us briefly recall that the weight, mean and
variance of the background and foreground can be expressed, respectively, as
follows:

Table 3: Summary of the threshoding methods

Name Criterion Ref.

Isoentropic
Isoentropic partition of the grey level his-
togram

[5]

Kapur
Maximisation of the sum of foreground
and background entropy

[25]

Kittler-Illingworth
Minimisation of the relative entropy be-
tween the original grey level histogram
and the mixture of two Gaussians

[26]

Otsu
Maximisation of foreground and bac-
ground separability

[31]

Yen
Maximisation of the sum of foreground
and background correlation

[41]

ωb(k) =

k
∑

i=0

pi, ωf (k) = 1− ωb; (2)

µb(k) =

k
∑

i=0

ipi
ωb

, µf (k) =

L−1
∑

i=k+1

ipi
ωf

; (3)

σb(k)
2 =

k
∑

i=0

(i− µb)
2 pi
ωb

, σf (k)
2 =

L−1
∑

i=k+1

(i− µf )
2 pi
ωf

. (4)

where pi is the occurrence probability of the i-th grey value. In the remainder of
the section, in order to simplify the notation, we remove any explicit reference
to the dependence on k and simply indicate the above quantities as ωb, ωf , µb,
µf , σb and σf .

4.2.1. Isoentropic partition

This method sets the optimal threshold value kopt at the grey level that
splits the grey-scale histogram into two parts of equal entropy, where entropy
can be espressed as:

E(j) =

j
∑

i=0

pilog2
1

pi
(5)

4.2.2. Otsu’s method

Otsu’s method [31] seeks the value of k that best separates foreground
from background when considered as classes. Separability is estimated through
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between-class variance, which in the case of unidimensional distributions leads
to the following criterion:

kopt =
arg max

k ∈ {0, . . . , L− 1}

[

ωfωb (µf − µb)
2
]

(6)

4.2.3. Kapur’s method

Kapur’s method [25], sometimes referred to as maximum entropy criterion

[41], takes as threshold the grey level that maximises the sum of foreground and
background entropy:

kopt =
arg max

k ∈ {0, . . . , L− 1}
(Eb + Ef ) (7)

where

Eb =
1

ωb

k
∑

i=0

pilog2
ωb

pi
; Ef =

1

ωf

L−1
∑

i=k+1

pilog2
ωf

pi
(8)

4.2.4. Kittler-Illingworth method

This method assumes that the grey-scale histogram can be approximated
through a mixture of two Gaussian distributions – one for the foreground and the
other for the background – and sets the threshold at the value that minimizes the
error between the original histogram and the mixture of the two approximating
distributions [26]. In formulas we have:

kopt =
arg max

k ∈ {0, . . . , L− 1}

(

ωf ln
σf

ωf

+ ωb ln
σb

ωb

)

(9)

Later on, Juliun and Winxin showed that in the above equation the function
to minimise is actually the Kullback-Leibler divergence (minus a constant) be-
tween the original histogram, and the approximating mixture of the background
and foreground distributions [23]. The approach is therefore equivalent to find-
ing the value that minimises the relative entropy between the original histogram
and the mixture of the foreground and background Gaussian distributions.

4.2.5. Yen’s method

Yen’s approach [41] can be considered a variation of Kapur’s method in
which threshold is set at the value that maximises the sum of a property of
background and foreground which the authors refer to as ‘correlation’. For this
reason this technique is also known as maximum correlation criterion. If we
denote with Cb and Cf the correlation of foreground and background we have:

kopt =
arg max

k ∈ {0, . . . , L− 1}
(Cb + Cf ) (10)

where
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Cb = log2

[

k
∑

i=0

(

ωb

pi

)2
]

Cf = log2

[

L−1
∑

i=k+1

(

ωf

pi

)2
]

; (11)

It is worth mentioning that both Yen and Kapur’s methods in fact seek the
value that maximizes the sum of background and foreground’s entropy of order

α [35], where α = 1 for Yen’s and α = 2 for Kapur’s.

5. Experiments

We conducted a series of experiments to assess the performance and robust-
ness of the proposed two-step procedure. The experimental activity, which is
based on the materials described in Sec. 3, is divided in two parts: in the first
(Sec. 5.1) we estimated the accuracy that can be achieved in the classifica-
tion of paper patches as defective or non-defective; in the second (Sec. 5.2) we
evaluated how effectively can thresholding separate paper impurities from the
rest. As for the second part, we considered two different scenarios: one in which
both the defective and non-defective patches are submitted as is (i.e.: without
previous separation) to the thresholding step; the other in which the patches
are first separated into defective and non-defective, then only the defective ones
are passed on to the thresholding step.

5.1. Estimation of classification accuracy

Classification accuracy has been estimated through stratified sampling. The
images of each paper class are randomly split into two non-overlapping sub-sets,
one for training and the other for validation, with the constraint that an equal
number of defective and non-defective samples is used to train the classifier. In
order to obtain a stable estimation of accuracy, the random subdivision into
training and validation set is repeated P times, thus generating P classification
problems. In each problem a 1-NN classifier is first trained using the images of
the training set, then accuracy is estimated as the percentage of images of the
validation set classified correctly. The overall accuracy (CA) is the average over
the P problems:

CA =
1

P

P
∑

p=1

nc,p

nv,p

(12)

where nc,p is the number of the p-th validation set correctly classified and nv

the number of images of the p-th validation set. In our experiments we used
P = 100 . In order to assess the sensitivity of the methods to the fraction of
samples used to train the classifier, we repeated the experiments using three
different ratios, namely 1/2, 1/4 and 1/8, which correspond to 24, 12 and 6
training samples, respectively.
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5.2. Estimation of thresholding accuracy

As a figure of merit for thresholding, we considered the sum of the percentage
of foreground pixels (i.e.: impurities) correctly classifed as foreground and that
of background pixels correctly classified as background. In formulas:

TA =
|B ∩BGT|

|BGT|+ |FGT|
+

|F ∩ FGT|

|BGT|+ |FGT|
(13)

where TA is the thresholding accuracy; B and F are the background and fore-
ground after thresholding; BGT and FGT are the ‘true’ background and fore-
ground, which in our experiments are represented by the manually established
ground truth. Note that TA is the complement to one of the misclassification
error as defined in Ref. [37].

5.3. Reproducible research

For reproducible research purposes, all the data needed to replicate the ex-
periments (i.e.: source code, images and subdivisions into train and validation
sets) are available online [32]1.

6. Results and discussion

Tables 4 and 5 report the accuracy of the different methods proposed for
classification and thresholding steps. The figures show that high classification
accuracy can be obtained in both cases.

A comparative analysis of the image descriptors used for discriminating de-
fective paper patches from non-defective reveals interesting and rather unex-
pected results. Gabor filters clearly emerge as the most reliable method: even
with a training ratio as low as 1/8 they can attain, on average, over 96% accu-
racy. By contrast, one of the most surprising outcomes is actually a negative
one: that histograms of equivalent patterns do not work particularly well in this
application. Among them, and despite its high reputation, remarkably poor is
the performance of LBP – a method that in other contexts has proved good.
The other methods (i.e.: co-occurrence matrices, granulometry and variogram)
lie in the middle, but signficantly below Gabor filters.

Regarding thresholding, we see that Kapur’s, Kittle-Illnghworth’s and Yen’s
methods all produce close to 100% accuracy. Conversely, neither isoentropic
partition nor Otsu’s method proved accurate enough. The beneficial effects
of the method proposed here emerge clearly: a marked increase in the overall
thresholding accuracy can be obtained with our two-step procedure, with an
average positive main effect reaching ≈25 percentage points (see Tab. 5).

In summary, the results show that the combined use of Gabor filtering (for
classification) and any of Kapur’s, Kittler-Illingworth’s or Yen’s methods (for
thresholding) represents the most effective implementation of the procedure

1To access the page: user = paper, password = particles
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Table 4: Classification accuracy.

Texture descriptor Dataset
1 2 3 4 5 6 7 8 9 10 11 Avg

Training ratio: 1/2
LBPri

8,1 84.4 83.7 54.8 74.2 53.1 89.9 89.2 65.6 58.6 93.9 61.1 73.5

ILBPri
8,1 80.8 78.8 54.7 60.9 55.5 83.1 75.7 60.0 57.7 88.9 52.3 68.0

BGCri
8,1 73.8 74.3 57.8 76.0 58.3 78.5 72.4 63.8 61.1 86.7 62.8 69.6

GLCM1 82.6 91.9 97.7 98.1 85.6 99.6 98.0 66.5 98.1 97.0 98.9 92.2

GLCM2 76.5 88.6 95.7 97.7 79.1 98.8 97.0 63.0 95.3 98.2 98.3 89.8

GaborDFT
4,6 99.1 99.0 95.0 100.0 80.3 99.7 99.6 92.3 97.6 98.4 97.5 96.2

GaborDFT
6,8 99.3 100.0 99.3 100.0 84.2 100.0 100.0 94.1 98.2 99.3 98.9 97.6

Granulometry 91.1 95.9 85.8 96.0 65.6 97.4 98.7 72.9 92.9 96.4 87.8 89.1

Variogram 93.2 98.6 98.3 100.0 83.2 99.9 97.3 67.7 93.6 97.5 98.9 93.5

Training ratio: 1/4
LBPri

8,1 81.1 81.9 52.5 70.1 54.4 86.8 85.1 60.2 57.7 92.6 61.2 71.2

ILBPri
8,1 79.0 77.6 54.4 58.5 53.0 80.4 74.0 58.4 55.6 88.9 52.9 66.6

BGCri
8,1 74.7 74.1 54.4 74.3 57.0 76.4 70.0 56.9 58.9 84.2 62.5 67.6

GLCM1 79.2 88.6 97.6 97.5 82.3 99.2 97.5 62.0 97.4 96.4 98.8 90.6

GLCM2 74.3 85.2 94.4 97.1 77.0 98.5 96.0 60.3 93.5 96.6 98.3 88.3

GaborDFT
4,6 98.0 98.6 94.5 100.0 77.2 99.1 98.7 91.1 96.6 98.0 97.5 95.4

GaborDFT
6,8 98.9 99.9 98.4 100.0 83.4 100.0 100.0 93.8 97.4 98.9 98.3 97.2

Granulometry 89.1 93.6 83.1 94.3 63.3 96.5 97.6 68.8 88.0 95.0 86.4 86.9

Variogram 92.3 97.7 97.4 100.0 82.2 99.4 97.3 64.4 92.8 96.3 98.0 92.5

Training ratio: 1/8
LBPri

8,1 78.3 80.8 52.6 67.5 54.1 82.2 80.8 56.5 55.5 90.7 58.8 68.9

ILBPri
8,1 74.4 73.2 53.9 58.0 52.9 78.2 71.4 55.9 55.2 86.0 53.4 64.8

BGCri
8,1 72.6 72.0 54.5 71.7 53.3 73.2 68.9 53.7 57.2 82.3 62.2 65.6

GLCM1 78.3 86.4 96.5 97.0 81.2 98.7 96.4 57.1 95.2 95.1 98.2 89.1

GLCM2 73.7 84.0 93.1 96.1 75.7 98.3 94.9 57.4 92.4 95.8 97.6 87.2

GaborDFT
4,6 97.1 98.5 91.3 99.5 73.9 98.7 98.4 89.0 94.9 97.7 97.4 94.2

GaborDFT
6,8 98.6 99.8 97.2 99.9 82.0 99.9 100.0 93.3 97.0 98.7 97.9 96.8

Granulometry 84.8 90.3 80.6 89.1 59.8 94.1 96.1 61.5 80.5 93.3 83.9 83.1

Variogram 92.1 95.6 96.4 99.4 78.7 98.8 97.5 60.6 92.1 94.5 97.5 91.2

proposed herein. Since the tresholding step provides virtually error-free results
(it seems reasonable to assume the small differences from 100% accuracy are
within the intrinsic uncertainty of the manually-set ground truth), we can take
the accuracy of the classification step as the measure of goodness for the whole
process.

7. Conclusions

The problem of detecting and characterizing particles in paper is of primary
importance in the papermaking industry. The available computer vision meth-
ods usually rely on preliminary image thresholding to separate the impurities
from the background, followed by further processing to characterize and clas-
sify them. Such approaches, however, fail when the inspection area contains no
defect at all, since in this case any thresholding method would produce unpre-
dictable and unreliable results. In this work we have approached the problem
in a different way. We have decomposed it in two parts: discrimination between
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Table 5: Thresholding accuracy with and without preliminary classification into
defective and non-defective patches).

Thresholding
method

Preliminary
classifica-

tion
Dataset

1 2 3 4 5 6 7 8 9 10 11 Avg

Isoentropic
yes 54.0 54.2 56.8 57.9 53.9 54.4 54.6 52.8 56.1 59.8 57.0 55.6

no 52.6 52.3 55.4 56.5 53.5 52.7 52.8 52.4 55.2 55.3 56.7 54.1

Kapur
yes 99.6 99.5 99.6 99.8 99.7 99.5 99.6 99.7 99.8 98.8 99.2 99.5

no 59.5 52.8 87.7 99.6 93.8 56.1 56.4 70.4 93.0 55.7 99.2 74.9

Kittler-Illingworth
yes 99.6 99.7 99.6 99.6 99.8 99.7 99.8 99.8 99.7 98.9 99.1 99.6

no 61.3 51.0 92.4 96.6 82.2 64.5 60.4 73.9 93.5 59.9 94.3 75.5

Otsu
yes 64.1 72.5 77.8 85.7 60.4 87.2 83.3 56.4 71.4 90.7 84.8 75.9

no 57.3 59.7 69.6 73.9 58.7 68.6 66.7 54.5 65.8 70.0 74.2 65.4

Yen
yes 99.6 99.6 99.6 99.8 99.8 99.6 99.6 99.8 99.8 98.9 99.3 99.6

no 59.6 54.2 86.7 99.5 92.8 58.3 58.1 72.7 92.0 56.1 99.3 75.4

defective and non-defective image patches, and analysis of the defective ones.
The proposed solution is therefore a two-step one: we first proceed to separate
the defective patches from the non-defective, then apply thresholding to the
defective patches only. The experiments have shown that virtually perfect sep-
aration of the particles from the background can be obtained in this way. The
results of the first step are also satisfactory, with an overall average accuracy
> 96%.
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[11] D. Danielewicz and B. Surma-Ślusarska. Application of computer image
analysis for characterization of various papermaking pulps. Cellulose Chem-

istry and Technology, 44:285–291, 2010.
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[35] A. Rényi. On measures of entropy and information. In Fourth Berkeley

Symposium on Mathematical Statistics and Probability, volume 1, pages
547–561, Berkeley, USA, June-July 1960.

[36] P.K. Sahoo, S. Soltani, and K.C. Wong. A survey of thresholding tech-
niques. Computer Vision, Graphics, and Image Processing, 41(2):233–260,
1998.

[37] M. Sezgin and B. Sankur. Survey over image thresholding techniques
and quantitative performance evaluation. Journal of Electronic Imaging,
13:146–165, 2004.

[38] P. Synnergren, T. Berglund, and I. Söderkvist. Estimation of curl in paper
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[39] J.E. Torniainen, L.S.A. Söderhjelm, and G. Youd. Results of automatic dirt
counting using transmitted light. TAPPI Journal, 82(1):194–197, 1999.

[40] M.R. Turner. Texture discrimination by Gabor functions. Biological Cy-

bernetics, 55(2-3):71–82, 1986.

[41] J. Yen, F. Chang, and S. Chang. A new criterion for automatic multilevel
thresholding. IEEE Transactions on Image Processing, 4(3):370–378, 1995.

17


