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Grey-level co-occurrence matrices (GLCM) have been on the scene for almost

forty years and continue to be widely used today. In this paper we present a
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method to improve accuracy and robustness against rotation of GLCM features
for image classification. In our approach co-occurrences are computed through
digital circles as an alternative to the standard four directions. We use discrete
Fourier transform normalization to convert rotation dependent features into ro-
tation invariant ones. We tested our method on four different datasets of natural

and synthetic images. Experimental results show that our approach is more ac-
curate and robust against rotation than the standard GLCM features.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Grey-level co-occurrence matrices are among the most long-
standing texture descriptors in use, their origin dating back to
the pioneering work of Haralick et al. (1973). Though many
other methods have been proposed since their appearance —
see Xie and Mirmehdi (2008) for a comprehensive overview
— GLCM continue to be very common and widely adopted still
today. Bibliometric data reveal that the number of relevant sci-
entific papers has even increased during the last years (see Tab.
1). GLCM features are particularly appealing for their con-
ceptual simplicity, ease of implementation and the low number
of features they produce. A recent comparative experiment on
image classification under non-ideal conditions (Kandaswamy
etal., 2011) showed that GLCM features tend to perform better
when few classes (10 or less) are involved, a situation in which
they can compete with newer and more powerful methods. Be-
sides, co-occurrence features can be combined with other de-
scriptors that convey complementary information through suit-
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able fusion schemes (Clausi and Deng, 2005). Recent applica-
tions of GLCM span very diverse areas of image processing,
including surface inspection (Dutta et al., 2012; Ben Salem and
Nasri, 2010), environmental monitoring (Arebey et al., 2012;
Manivannan et al., 2012), content-based image retrieval (Ra-
mamurthy and Chandran, 2012) and image reconstruction (Az-
zabou et al., 2010). Among the numerous application areas, co-
occurrence matrices seem to be particularly common in medi-
cal image analysis (Hu et al., 2012; Linder et al., 2012; Barwad
etal., 2012; Parekh, 2012; Gémez et al., 2012) and remote sens-
ing (Berthelot et al., 2013; Wu et al., 2012; Masetti and Calder,
2012; Kandaswamy et al., 2005).

Co-occurrence matrices have been extended in various di-
rections, leading to several variations such as generalized co-
occurrence matrices (Davis et al., 1979), which consider the
distribution of local maxima; integrative co-occurrence matri-
ces (Palm, 2004), which operate on colour images and, more
recently, pattern co-occurrence matrices (Song, 2011; Gonzélez
et al., 2014), which analyse the co-occurrence of local patterns.
By contrast, the original formulation has not changed signif-
icantly since its appearance. This is not uncommon: when a
method matures and new ones appear, scientific interest tends
to switch from the former to the latter. Newer methods receive
more attention, and the older becomes frozen, somewhat im-
mutable, with few chances of improvement. Something of this
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type we believe has happened with co-occurrence matrices, at
least for what it concerns rotation invariant features.

Motivated by the wide diffusion of the method — even in
very critical areas like medical image analysis and computer-
assisted diagnosis, we wished to investigate whether it was pos-
sible to improve robustness and accuracy of the method in ro-
tation invariant classification tasks. This is a major concern,
for in many applications images can occur in different and un-
controlled rotation angles. The common approach to obtain-
ing rotationally-invariant features from co-occurrence matrices
consists of averaging (Haralick et al., 1973; Alam and Faruqui,
2011; Bino Sebastian et al., 2012) or — equivalently — summing
up (Petrou and Garcia Sevilla, 2006, p. 215) the matrices cor-
responding to the same distance and different directions. We
believe that this procedure reduces significantly and somewhat
unnecessarily the discrimination capability of the resulting fea-
tures. We therefore propose some improvements to compute
more efficient rotationally-invariant features from GLCM. Our
study considers the effects of two design factors that determine
how GLCM features are computed. These are: 1) the spatial ar-
rangement of pairs of pixels; and 2) the way to convert GLCM
features into rotation invariant ones. In the remainder of the pa-
per we first discuss such design factors (Sec. 2), then evaluate
their effects through an image classification experiment (Sec.
3). We present and analyse the results in Sec. 4 and conclude
with final considerations in Sec. 5.

2. Design factors

Grey-level co-occurrence matrices estimate the joint occur-
rence probability of grey levels at a given distance and direc-
tion. The method is intrinsically directional, hence sensitive
to rotation. In order to achieve rotation invariant descriptors,
we need to remove the dependence on direction and obtain fea-
tures that depend on distance only. Such a goal can be obtained
through the following steps: 1) for each pixel in the image, con-
sider all pixels that are located approximately at a given dis-
tance from it (we refer to this entity as neighbourhood); 2) ex-
tract rotation dependent features for each direction defined by
the neighbourhood; 3) convert the rotation dependent features
into rotation-independent ones. We discuss each step in the re-
mainder of this section, with particular emphasis on steps 1)
and 3), which represent the chief objective of this study. Less
emphasis will be devoted to step 2), for the extraction of rota-
tion dependent co-occurrence features is quite a standard oper-
ation that does not require further explanations. Following the
terminology of Design of Experiments (see Cochran and Cox
1957, p. 148), the type of neighbourhood and the procedure to
obtain rotation invariant features will be the design factors of
our study; the possible solutions for each factor will be referred
to as variations'. A combination of variations will be referred
to as a treatment. In the following subsections we discuss the
design factors and variations considered in the study.

ITo our ear this term sounds better, in this context, than the more common
level.

2.1. Type of neighbourhood

Let [y denote the grey value of a pixel and ;, j € {1,..., N}
the grey values of a set of pixels approximately equidistant from
it, with the convention that /; stands horizontally on the right of
Iy and the others follow counter-clockwise from I; (Fig. 1).
Note that, since the image is scanned by one-pixel steps, it is
not necessary, due to symmetry, to consider the entire neigh-
bourhood: only one half suffices (for a detailed explanation see
Petrou and Garcia Sevilla 2006, p. 280).

In I

Iy Y Iy

Fig. 1. Neighbourhood of pixels.

We consider two variations for the type of neighbourhood:
the original formulation proposed by Haralick et al. (1973),
based on four directions — this is by far the most used in practice
—, and the digital circles proposed by Petrou and Garcia Sevilla
(2006).

2.1.1. Original formulation

In Haralick’s formulation the neighbourhood is formed by
the central pixel plus four peripheral pixels equally spaced at
angular intervals of 45°. For a given distance d, the relative co-
ordinates of the peripheral pixels with respect to the central one
are: (0,d), (-d,d), (—d,0), (-d, —d). In this scheme the number
of pixels in the neighbourhood is constant, therefore indepen-
dent of d. Fig. 2 shows the neighbourhoods corresponding to
distances d = 1,2, 3. In the remainder, we use the subscript ‘*’
to refer to this variation.

Fig. 2. Type of neighbourhood: original, four-direction.

2.1.2. Digital circles

As an alternative to the neighbourhood described above,
Petrou and Garcia Sevilla (2006) suggested the use of digital
circles. The definition of circle in the continuous space does
not translate immediately into the digital domain, thus the way
to define digital circles is not unique (for a discussion on this



Table 1. Co-occurrence matrices — bibliometric overview. Source: Scopus®. Query: TITLE(”co-occurrence matrices” OR ”GLCM”) OR AUTHKEY (co-

occurrence matrices” OR ”GLCM”). Accessed on Jan 27, 2014

Source type

Year

2006 2007 2008

2009 2010 2011 2012 2013

Conference proc. 34 33 48
Journals 28 30 35

74 95 113 103 63
47 45 60 67 93

topic see the work of Mukherjee et al. 2000). Herein we used
the same strategy proposed in Petrou and Garcia Sevilla (2006):
a pixel belongs to a neighbourhood of radius d if its distance to
the central pixel is in the range [d — 1/2,d + 1/2). With this
setting, the number of pixels forming the neighbourhood de-
pends on d, and asymptotically approaches [7d], where [-] in-
dicates ‘the nearest integer of’. The resulting neighbourhoods
ford = 1, 2,3 are shown in Fig. 3. In the remainder, we use the
subscript ‘o’ to refer to this variation.

Fig. 3. Type of neighbourhood: digital circles.

2.2. Extraction of rotation dependent features

Consider a generic grey-scale image I. From any neighbour-
hood containing N peripheral pixels we get N angular depen-
dent co-occurrence matrices, each corresponding to the direc-
tion defined by pixels 0 and j (see Fig. 1). Now let M; indicate
any such co-occurrence matrix and f;k) a generic parameter ex-
tracted from it, with 1 < k < K, being K the total number of
parameters (let these, for instance, be contrast, correlation, en-
ergy, etc. — see Sec. 3.2). Ideally, as the input image rotates
by angular steps multiple of the angle formed by two adjacent
peripheral pixels, each k-th vector f®) = [ fl(k), . f[i/k)] circu-
larly shifts by one or more positions. In practice some intrin-
sic limitations of the digital domain do not let this condition
hold perfectly: on the one hand, the length of the displacement
vector varies as the direction changes; on the other hand, the
angular interval is not uniform. It is nonetheless reasonable to
assume that the circular shift condition holds, at least with good
approximation. To obtain rotation invariant features we need to
transform the f®) through functions that are invariant under a
cyclic substitution. In the following subsection we discuss four
different solutions.

2.3. Conversion from rotation dependent into rotation indepen-
dent features

Let us start by recalling some basic functions that will serve
as a basis for defining rotation independent features. Let x =
[x1,...,xy] denote a vector of real numbers; the functions are:

Average
1 &
= Z X (1)
Jj=1
Range
AX:maX(xj)—min(xj); jell,...,x;,...,N} (2
Mean absolute deviation:
1 &
5x=NZ|xj—x| 3)
j=1
Discrete Fourier transform:
Wl (m=1)(j-1)
N N ~ ~ N _j2xm=1(j=1)
X=[X.00 .00 AN]S xm=zxje’ N “4)
j=1

where i = V—-1.

The above functions can be viewed as basic blocks for com-
puting rotation invariant features. The use of average and range
was advocated by Haralick himself in his seminal work (Haral-
ick et al., 1973). Curiously, it seems that related literature has
taken in only the first but, for reasons unknown to us, largely
overlooked the second. The common treatment is in fact based
on the average alone, as in Haralick et al. (1973); Mendoza et al.
(2007); Xian (2010); Alam and Faruqui (2011); Bino Sebastian
et al. (2012). In our experiments we considered both average
alone and in concatenation with range. Finally, the discrete
Fourier transform is another means to obtain rotation invari-
ant features, for the moduli of the transformed coefficients X,
(Eq. 4) are invariant to any circular shift of the input vector
x (see, for instance, Bianconi et al. 2009). To the best of our
knowledge the mean absolute deviation and the absolute values
of DFT coefficients have been not experimented before with co-
occurrence matrices.

In summary we considered the following four variations to
convert the rotation dependent features f® into rotation inde-
pendent ones: 1) the average of £; 2) a concatenation of the
average and range of f®; 3) a concatenation of the average,
range and mean absolute deviation of £f®: and 4) the absolute
values of the DFT-transformed coefficients of f*. By combin-
ing these four feature normalization procedures with the two
types of neighbourhoods described in Sec. 2.1 we get the eight
treatments summarized in Tab. 2, where symbol ‘||’ stands for
‘concatenation’.



Table 2. Summary of the treatments studied in the experiments.

Neighbourhood type Feature normalization Symbol No. of features
Average f K
Four directions Average + range f.j AL 2K
) Average + range + mean absolute deviation  f:||Af:||6f- 3K
Discrete Fourier transform f- 4K
Average fo K
T Average + range fo||Afo 2K
Digital circles Average + range + mean absolute deviation ~ fo||Afo||5f 3K
Discrete Fourier transform f- ~ [nd] K

3. Experiments

We performed a set of image classification experiments to
evaluate accuracy and robustness against rotation of the de-
scriptors presented in the preceding section. Datasets and pro-
cedure used in the experiments are detailed in the following
subsections.

3.1. Datasets

The four datasets used in the experiments and summarized
in Secs. 3.1.1 — 3.1.4 contain hardware-rotated images of pla-
nar or almost planar surfaces showing approximately stationary
textures. These inclusion criteria are supported by the follow-
ing considerations: first, the need to avoid software-rotated im-
ages, since rotation by software may modify the image micro-
structure and lead to misleading results (Ferndndez et al., 2011);
second, images from planar or almost planar surfaces are less
prone to artifacts resulting from shadows caused by surface
roughness; finally, the use of stationary textures minimizes the
sampling error related to the creation of train and validation sets
(see Sec. 3.3).

3.1.1. Brodatz

This dataset contains the following 13 texture classes from
the Brodatz’s album: D9, D12, D15 D16, D19, D24, D29, D38,
D68, D84, D92, D94 and D112. Hardware-rotated digital im-
ages have been captured in our lab directly from the original
book (Brodatz, 1966) through the imaging system described in
Bianconi et al. 2013. The apparatus permits to acquire rotated
images at angular steps of 10°, a feature that we used to take
images at the following rotation angles: 0°, 10°, 20°, 30°, 40°,
50°, 60°, 70°, 80° and 90°. The original images has been subdi-
vided into 4x4 non-overlapping samples of resolution 205x205
pixels each, resulting in 16 samples per class.

3.1.2. MondialMarmi

MondialMarmi is a free image database of granite tiles for
colour and texture analysis. The current version (1.1) includes
12 granite classes: Acquamarina, Azul Capixaba, Azul Platino,
Bianco Cristal, Bianco Sardo, Giallo Napoletano, Giallo Or-
namentale, Giallo Santa Cecilia, Giallo Veneziano, Rosa Beta,
Rosa Porrio A, Rosa Porrio B. The dataset features hardware-
rotated images taken at nine different rotation angles: 0°, 5°,
10°, 15°, 30°, 45°, 60°, 75° and 90° (for a detailed description

of the acquisition procedure see Ferndndez et al. 2011). There
are four images for each class, every one image representing a
different tile. The original images have been subdivided into
four non-overlapping samples generating a dataset of 16 sam-
ples per class of resolution 272 x 272.

3.1.3. Outex

Outex is a well-established texture database for evaluating
texture classification and segmentation algorithms. The suite
contains hardware-rotated images taken at the same rotation an-
gles as MondialMarmi. Herein we considered a selection of 45
texture classes: canvas{005, 021}; carpet005; granite{001, 003,
004, 005, 006, 007, 008, 009, 010}; paper006; plastic{001, 002,
003, 004, 005, 009, 016, 017, 018, 019, 020, 021, 022, 023,
024, 025, 026, 027, 028, 029, 030, 031, 032, 033, 034, 035,
036, 038, 040, 041}; wood{006, 008}. We refer to this subset of
the Outex database as OUTEX_00045. This selection satisfies,
to a great extent, the inclusion/exclusion criteria stated at the be-
ginning of the section (i.e.: flatness of the original surface and
stationariness). Following the instructions available in OuTeX,
we subdivided the original images into 20 non-overlapping sub-
samples of resolution 128 x 128 each.

3.1.4. Vectorial

This dataset is composed of 20 artificial texture classes de-
rived from vectorial images (Fig. 4). These have been down-
loaded from a free-access repository (All-free-download). Un-
like raster images, vectorial images can be software-rotated
without introducing any artifacts. Therefore, images rotated
this way can be considered as if they were hardware-rotated.
We constructed this dataset in the following way: first, we re-
sized the original images to 20cm X 20cm; second, we rotated
each image by the same angles used in the Brodatz dataset
through a free editor for vector graphics (Inkscape); third, we
rasterized the resulting images at a resolution of 300dpi; fi-
nally, we retained a centred square of each raster image and
subdivided it into 16 non-overlapping sub-images of dimension
225 % 225 each.

3.2. Features

For each direction resulting from a certain neighbourhood
type and a given distance d, we computed five features among
those most frequently used in the literature, namely: contrast,



Table 3. Overall results.

Texture descriptor ~ No. of features Dataset
Brodatz MondialMarmi ~ OUTEX_00045 Vectorial
£+ 5 777 +2.6 80.8 + 2.1 564+ 1.2 777 3.2
f- 5 76.6 +2.2 80.5 + 2.1 564 +12 77.6 £3.2
£+ || AFp« 10 78.8 £ 13.0 86.5+24 59.4 +4.2 80.9 + 3.6
£y ||Afy« ||6F < 15 78.6 = 13.0 86.7 + 2.6 59.8 +4.2 80.9 + 3.6
fi- 20 824 + 8.8 849 +2.2 59.7+34 80.4 +3.3
f7 1o 5 77.7 £2.6 80.8 + 2.1 564 +1.2 777 +£32
fio 5 76.6 +2.2 80.5 + 2.1 564+ 1.2 77.6 +3.2
fio || 10 78.8 £13.0 86.5+24 594 +42 80.9 + 3.6
Fio||Af o ||6F1o 15 78.6 £ 13.0 86.7 £ 2.6 59.8 +4.2 80.9 + 3.6
fo 20 82.4 + 8.8 849 +22 59.7 +3.4 80.4 + 3.3
£7 5 5 82.0 +2.7 81.9+2.6 559 +0.6 81.0+24
e 5 80.6 £ 2.9 81.6 £ 2.7 56.3 +0.7 80.8 +2.4
o+ || Af>+ 10 84.2 + 8.8 88.8 £2.3 599 +3.6 83.1+3.3
B2+ || Af>« ||6F 15 83.7+9.2 89.3+2.3 60.4 + 3.6 832 +34
fp 20 87.5+6.3 884 +23 60.4 £2.5 83.5+2.8
£’ 5 83.2+19 82.1 +£2.7 56.2 + 0.8 80.6 +2.3
o 5 81.0+1.7 81.9 +2.7 56.6 + 0.7 80.5+2.3
foo || Afpe 10 90.5 + 6.1 87.8 + 3.1 57.1+6.5 83.0 +3.0
£20 || Afoo ||6F20 15 90.8 £ 6.1 88.0 £ 3.1 573 +6.5 829 +3.1
fpe 30 93.3+3.0 874 +24 59.5+3.0 834 +23
f73+ 5 82.2+2.6 799 +2.0 52.0 +0.7 824 + 1.7
£5 5 81.0 +2.3 79.4 +2.1 522+0.6 822+ 1.8
f3+ || Af3- 10 85.8+7.3 883+ 1.5 56.6 + 1.7 843 +3.1
f3+ || Af3« ||6F5< 10 85.6 74 89.0+ 1.6 576+ 1.8 843 +32
f3- 15 87.7+6.7 88.8 £ 1.8 58.1+1.4 84.5+2.5
f730 5 842+ 1.1 80.9 +2.3 544 +£0.9 822 +1.9
f30 5 819+ 14 80.7 £ 2.5 54.8 +1.0 82.0+1.9
£30||Afz0 10 94.7+2.6 89.6 + 1.9 58.6+ 1.5 84.7+ 2.0
f30 || Afs0||6F30 15 948 £2.5 89.7+ 1.9 58.6 1.7 84.7+2.0
f30 40 95.1+1.2 88.6 + 1.9 58.7+1.5 85.0+ 1.7
4 5 79.8 +2.5 783+22 49.7 £ 1.2 823+ 1.9
£y 5 783 +£2.9 78.0+2.3 498 £ 1.3 82.1 +2.0
£y || Afys 10 79.8 £ 124 86.9 +2.2 549+ 1.0 84.5+3.2
Fyr || Af s ||6F 4 15 79.6 £ 12.5 87.5+22 557+12 84.5+33
£y 20 829 +11.1 88.6 + 1.6 56.6 £ 1.3 844 +2.6
f7 40 5 835+ 14 79.4 +2.0 522 +0.7 829+ 1.7
fs 5 823+ 1.5 78.9 +2.0 52108 827+ 1.8
fio || Ao 10 95.2+0.7 879+ 1.0 59.9 £ 0.9 86.0 + 1.6
fyo || Af4o||6F40 15 954 + 0.7 88.2 + 1.1 60.0 + 0.9 86.0 + 1.7
fa0 80 946 + 1.0 88.8 £ 1.5 599+ 1.0 85.6+14
Contrast:
1 G-1G-1
FOM) = —— Z Jue = vEM(u, v)
-1
u=0 v=l
Correlation:
f(2) (M) = MGQI (l/l M) (v = 1) M(u, V)
20,0,
Fig. 4. Vectorial dataset (20 classes).
Energy
G-1G-1
oo = M(u, v)*
correlation, energy, entropy and homogeneity. The implemen- u=0 v=0
tation adopted herein guarantees that all the features have range Entropy
[0, 1]. For this reason our implementation can be slightly differ- G161
ent from other formulations in which features are normalized in f(4) (M) =

a different way. In formulas we have:

z(G

u=

V=

1

) Z Z M(u, v) log, [M(u, v)]

®)

(6)

(7

(®)



Homogeneity

G-1G-1
£O (M) = Mey) ©)

u=0 v=0 1+ |I/t - Vl

where G represents the number of grey levels; u,v the coordi-
nates of the co-occurrence matrix; u,, i,, o, and o, the means
and the standard deviations of the marginal distributions asso-
ciated with the co-occurrence matrix.

3.3. Estimation of classification accuracy

We estimated the classification accuracy through a super-
vised classification task based on the nearest-neighbour (1-NN)
rule with L; distance. The absence of tuning parameters, as well
as the ease of implementation and other desirable asymptotic
properties, support and explain the wide use of this method for
comparative purposes (see for example Varma and Zisserman
2009; Guo et al. 2010; Crosier and Griffin 2010; Kandaswamy
et al. 2011). For each dataset we generate a predefined num-
ber of classification problems (100 in our experiments); in each
problem we split the dataset into two non-overlapping subsets,
one for training and the other for validation, with the constraint
that, for each class, half of the samples are used for training and
the other half for validation. To study the effects of image ro-
tation, we always train the classifier with unrotated images and
test it using images rotated by 6 degrees, where 6 is one of the
rotation angles available in the dataset.

3.4. Calibration against other methods

For comparison purposes we calibrated the results against the
following rotation-invariant texture descriptors: circular and ra-
dial co-occurrence features as proposed by Barrera et al. (2012);
wavelet co-occurrence features (WCF) as proposed by Mukane
et al. (2011); rotation-invariant local binary patterns (versions
LBP”1 and LBPl 62)- We briefly outline the first two methods in
the followmg subsections; for details about LBP the interested
reader is referred to the work Ojala et al. (2002). The accuracy
of each method is reported in Tab. 4.

3.4.1. Circular and radial co-occurrence features

The method described by Barrera et al. (2012) is based on
a combination of ‘circular’ and ‘radial’ features. Circular fea-
tures encode the co-occurrence of the mean grey-level of two
concentric circles; radial features the co-occurrence of the mean
grey-level of adjacent radial lines separated by uniform angu-
lar spacing. From the resulting co-occurrence matrices suitable
statistics are extracted from each of the two groups; then, for
any pair of them, a new feature is computed as the root mean
square value of each pair. In our implementation we maintained
the settings recommended in the cited reference, namely an in-
ternal and external radius value r; = 2 and r, = 2, respectively,
for the circular features, and N = 8 directions with radius » = 5
for the radial features. For fair play we used the same five statis-
tics described in Sec. 3.2. As a result, the number of features
resulting from this implementation is five.

3.4.2. Wavelet co-occurrence features

This approach combines standard grey-level co-occurrence
features computed not only from the original image, but also
from each of the four sub-bands resulting from one-level
wavelet decomposition of the original image. As suggested
in the original reference (Mukane et al., 2011), we perform
image decomposition through Daubechies’ ‘db4’ wavelet. In
our implementation we compute co-occurrences using the four
standard directions (i.e. 0°, 45°, 90° and 135°) and distance
d = {1,...,4}. Then the five statistics described in Sec. 3.2
are extracted from each co-occurrence matrix. For rotation-
invariance we followed the approach proposed by Zhu et al.
(2011), which consists of extracting the mean and standard de-
viation of each statistic over the different directions. As a result
we get ten features from the original image and for each of the
four one-level sub-bands, giving a total number of 50 features
as a result.

3.5. Reproducible research

For reproducible research purposes, all the data required to
replicate the experiments (i.e.: source code, images and sub-
divisions into train and validation sets) are available online
(GLCM)*.

4. Results and discussion

The overall results of the classification experiment are sum-
marized in Tab. 3. For each descriptor and dataset the table
reports the results in the form y + o, where y and o are, re-
spectively, the mean and standard deviation of the classifica-
tion accuracy (in %) over the different rotation angles. Nu-
meric subscripts indicate the distance (d) at which the treat-
ments have been computed. The complete results for each rota-
tion angle are available in the companion website (GLCM). To
draw meaningful conclusions we pairwise compared the varia-
tions from the two standpoints of accuracy and robustness, as
detailed below.

4.1. Pairwise comparisons: accuracy

To pairwise compare accuracies within the same dataset we
adopted the following rule: a treatment 7, outperforms a treat-
ment T}, if the accuracy of 7T, is, for each angle, significantly su-
perior to that of T},. This is checked through Wilcoxon’s signed
rank sum test for equal medians with @ = 0.05. The test takes
as input the two vectors containing the 100 accuracy values pro-
duced by each descriptor in the 100 classification problems (see
Sec. 3.3).

To evaluate the response to each design factor we proceeded
in the following way: let V, and V), be two variations of a design
factor (let for instance V, indicate ‘neighbourhood type/four di-
rections’ and V,, ‘neighbourhood type/digital circles’). Each
time a treatment based on V, outperforms one based on V;, we
assign a win to V,, and a draw to V}, (and vice-versa); otherwise
we assign a draw. Wins, draws and losses are summed up for

2To access the page: user = co-occurrence, password = rotation



Table 4. Comparison with other methods.

Texture descriptor No. of features Dataset

Brodatz MondialMarmi ~ OUTEX_00045 Vectorial
Cireular + radial 5 609+ 126  758+27 350+£23  69.8+23
co-occurrence features
WCF,-; 50 774 +11.8 789 +0.9 70.7+7.5 80.0+29
WCF,;-» 50 82.0 + 10.6 80.3+1.9 739+7.2 79.9+£29
WCF,-3 50 79.7 +13.7 79.8 £2.7 712 +8.3 80.0 £2.9
WCF,—4 50 73.1 +16.6 80.0 + 3.0 704 +7.7 80.1 +2.8
LBPg’;1 36 83.0+7.7 83.6+24 73.7+1.2 704 +5.8
LBP”: 4116 95.0 + 1.9 885+ 1.5 788 + 1.6 753 +5.5

16,2

all distances and datasets (Tab. 5). As for neighbourhood type,
note that the comparison excludes the case d = 1, a situation in
which the two variations generate the same neighbourhood (see
Figs. 2 and 3). In addition, the table reports the main effect (av-
eraged over the the four datasets) that we get when we switch
from V, to V,,. The figures are in percentage points (pp).

Table 5. Pairwise comparisons: accuracy.

Variation  Variation = Wins Draws Wins  Main effect (pp)
Va \Z Va Vi Va— Vi
f fo 27 113 52 +1.8
f ) flAf 0 26 38 +5.1
f fl|Af||of 0 27 37 +5.3
f f 0 18 46 +5.8
flAf Fl|Af||of 2 58 4 +0.2
filaf f 1 58 5 +0.7
fliAtof £ 1 62 1 +0.5

4.2. Pairwise comparison: robustness

With the term ‘robustness’ we mean the capability of a de-
scriptor to maintain the same accuracy when the relative ori-
entation between train and test images changes. A reasonable
estimate of this property is the standard deviation of the classi-
fication accuracy over the different rotation angles (see Tab. 3).
A high variability means low robustness and vice-versa. For a
given dataset we say that a treatment 7, is more robust than a
treatment 7, if the standard deviation of the accuracy of T,, over
the rotation angles featured by the dataset is significantly lower
than that of T}. To state whether there is significant difference
between two standard deviations, we used the F-test (& = 0.05).
Then we proceeded like in the previous section: each time a
treatment based on V,, is more robust than one based on V;, we
assign a win to V,, and a draw to V}, (and vice-versa); otherwise
we assign a draw. Again, wins, draws and losses are summed
up for all distances and datasets (Tab. 6). Note that a negative
main effect indicates an improvement in robustness.

Evaluation of robustness can be considered a second, ‘finer’
step to compare descriptors and treatments. It can be used to
further discriminate among methods that possess similar ac-
curacy. For this reason we only reported, in Tab. 6, robust-
ness comparison between the methods that emerged as the most

Table 6. Pairwise comparisons: robustness.

Treatment  Treatment  Wins Draws Wins  Main effect (pp)
Va Vi Va Vi Va = Vi
f: fo 16 115 61 -1.0
flAf fl|Af|of 4 56 4 +0.1
flaf £ 2 53 9 -0.9
Fl|Af||of t 2 53 9 -0.9

prominent from the pairwise comparisons of accuracies. Fi-
nally, the plots in Fig. 5 summarize the main effects on accu-
racy and robustness as functions of d.

4.3. Discussion

The average accuracy values reported in Tab. 3 confirm the
trend recently brought to light by Kandaswamy et al. (2011),
namely that co-occurrence features are fairly accurate in classi-
fication problems involving relatively few classes. This is true,
in our case, with datasets Brodatz, MondialMarmi and Vecto-
rial (respectively composed of 13, 12 and 20 classes) for which
we easily get over 80% accuracy. With more classes the figures
drop significantly: with OUTEX_00045 (45 classes) we barely
attain 60%. Comparison with alternative rotationally-invariant
co-occurrence features and other rotation-invariant descriptors
(see Tab. 4) shows that the formulations discussed in this paper
outperform the other methods in three datasets out of four.

Beyond absolute accuracy, it is however more relevant to this
work to analyse the relative effects of the treatments presented
in the preceding section.

4.3.1. Effect of the type of neighbourhood

As one would expect, switching from the original formula-
tion (four directions) to digital circles brings beneficial effects
both in terms of accuracy and robustness. As for accuracy, dig-
ital circles are almost twice more likely (52/27) to outperform
the original formulation, with an overall main effect of +1.8
percentage points. The difference is more marked for robust-
ness: in this case digital circles are approximately four times
more likely (61/16) to produce more robust results than the orig-
inal formulation. Fig. 5 shows that the better performance of
digital circles compared with the original formulation is more
noticeable as d increases. This result makes sense too, since the



original formulation always samples the input image at fixed
angular intervals of 45°, no matter the value of d, whereas dig-
ital circles produce a finer angular sampling of the input image
when d increases.

4.3.2. Effect of the type of conversion from rotation dependent
into rotation invariant features

The main and clearest result here is that the most common
approach for obtaining rotation invariant features (i.e.: taking
the average of the rotation dependent features) is, by far, the
worst. In no case the accuracy of this method is superior to any
of the other normalization methods considered in our experi-
ments (see Tab. 5). The main effect of switching from average
alone to any other method is also conspicuous, ranging from
+5.1 to +5.8 percentage points. It is important to emphasize, at
this point, that some implementations proposed in literature use
the average of the co-occurrence matrices themselves, instead
of the average of the features. In our experiments we found no
significant difference between the two methods (for the com-
plete results see GLCM), therefore, for the sake of homogene-
ity with the others, we retained the second. The remaining three
approaches exhibit similar results, in terms of accuracy, with a
little gap in favour of the discrete Fourier transform. This effect
is more marked when we speak of robustness (Tab. 6): DFT is
approximately four times (9/2) more likely to produce more ro-
bust results than either average+range or average+range+mean
average deviation, with an average decrease in o of 0.9 percent-
age points. Fig. 5 shows no clear trend as a function of d.

5. Conclusions

Co-occurrence matrices are among the most used image de-
scriptors, with applications covering almost any area of image
analysis. They are also one of the oldest — they first appeared
on the scene forty years ago. In this study we investigated
whether it was possible to improve robustness and accuracy
of the method for rotation invariant image classification. The
results of our study are in the affirmative: there is room for im-
provement.

As for the type of neighbourhood, digital circles proved ap-
preciably superior to the original formulation (four directions).
As one would expect, the beneficial effect is more noticeable as
d increases. It is therefore recommendable to adopt this setting
for any d > 1. Regarding the conversion into rotation invari-
ant features, the use of the average alone is significantly infe-
rior to any other methods studied here, and should therefore be
avoided. Any of the three other methods studied here (i.e.: av-
erage + range, average + range + mean absolute deviation or
discrete Fourier transform) works better. Of these, the DFT (to
the best of our knowledge not studied before in this context)
produced globally better results both in terms of accuracy and
robustness, though at the cost of a higher number of features
(see. Tab. 2). Comparison with other methods suggest that,
when properly implemented, co-occurrence features may even
perform better than well reputed descriptors such as LBP.

In summary, for practical applications requiring invariance
against rotation, we recommend using digital circles instead of
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the four-direction neighbourhood. We advise DFT normaliza-
tion if the number of features is not critical; otherwise, average
+ range or average + range + mean absolute deviation can be
used instead. We discourage the use of the most popular ap-
proach (i.e. average over four directions), since any of the other
treatments considered in this study performs better.
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