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A unifying framework for LBP and related
methods

Francesco Bianconi and Antonio Fernández

Abstract In this chapter we describe a unifying framework for local binary patterns
and variants which we refer to as histograms of equivalent patterns (HEP). In pre-
senting this concept we discuss some basic issues in texture analysis: the problem
of defining what texture is; the problem of classifying the many existing texture de-
scriptors; the concept of bag-of-features and the design choices that one has to deal
with when designing a texture descriptor. We show how this relates to local binary
patterns and related methods and propose a unifying mathematical formalism to ex-
press them within the HEP. Finally, we give a geometrical interpretation of these
methods as partitioning operators in a high-dimensional space, showing how this
representation can propound possible directions for future research.

1 Introduction

It is somewhat surprising that, in spite of the wide popularity and the numerous
applications of local binary patterns and variants (LBP&V, henceforth), little effort
has been devoted to address their theoretical foundations. In this chapter we wish
to provide some insight about the rationale behind these methods, hoping that this
could help to fill this gap. The overall aim of this chapter is to put LBP&V in the
context of related literature and show that such methods actually belong to a wider
class of texture descriptors which we refer to as histograms of equivalent patterns
(HEP).
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2 F. Bianconi and A. Fernández

Our journey starts with a discussion on some very fundamental issues in texture
analysis, such as the definition of texture itself and the problem of establishing a
clear and unequivocal classification of the existing texture descriptors. The lack of
a formal definition of texture, as well as the uncertainty entailed within the classi-
fication frameworks proposed thus far, represent, in fact, serious problems when it
comes to deciding whether LBP and related methods belong to one category or an-
other. A closer look at LBP&V reveals that a trait common to them all is the idea of
‘bag of features’, a concept that proves fundamental to texture analysis in general.
In the process of developing a texture descriptor, there are some fundamental issues
one has inevitably to deal with: how should we probe images? What type of local
features should we consider? How can we establish a dictionary of local features?
In what way should we assign a local feature to an entry in the dictionary? What
type of global statistical descriptors should we characterize an image with? Of these
questions, and of the possible answers, we discuss in Sec. 2, with specific empha-
sis on the solutions provided by LBP&V. In doing so, we show how these methods
can be easily expressed in a formal way within the wider class of histograms of
equivalent patterns. We show that many texture descriptors such as local binary pat-
terns, local ternary patterns, texture spectrum, coordinated clusters representation
and many others are all instances of the HEP, which can be considered a general-
ization of LBP&V. Finally we present a geometrical interpretation of these methods
as partitioning operators in a high-dimensional space. Since they are expressible as
systems of linear equalities and inequalities in the grey-scale intensities, we see that
they represent convex polytopes: convex figures bounded by hyperplanes which are
analogue of polygons in two dimensions and polyhedra in three dimensions.

2 Fundamental issues in texture analysis

Texture analysis is an area of intense research activity and vast literature. In spite
of this, there are two fundamental matters which have not been solved yet: 1) the
definition of the concept of texture; and 2) the establishment of a meaningful and
unambiguous taxonomy of the existing texture descriptors. The lack of satisfac-
tory solutions to these two key issues is a serious point of weakness that limits the
progress of the discipline. We strongly believe that significant advances in the field
could be achieved, if these problems could be sorted. In the following subsections
we discuss the two matters in detail.

2.1 Defining texture

Texture is a widely used term in computer vision, and it is rather surprising that
such a ubiquitous concept has not found a general consensus regarding an explicit
definition. Ahonen and Pietikäinen [2] correctly noted that this is perhaps one of the
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A unifying framework for LBP and related methods 3

reasons why neither a unifying theory nor a framework of texture descriptors has
been proposed so far.

The root of the word (from Latin texere = to weave) suggests that texture is
somewhat related to the interaction, combination and intertwinement of elements
into a complex whole. The concept of texture as the visual property of a surface,
however, is rather subjective and imprecise. We can recognize texture when we see
it, but defining it in a formal way is much more difficult. Certainly there are some
attributes of texture which are largely agreed upon: that texture is the property of
an area (and not of a point), that it is related to variation in appearance and that
it strongly depends on the scale of an image and that it is perceived as the combi-
nation of some basic patterns. Davies, for instance, states that most people would
probably call texture a pattern with both randomness and regularity [13]. Petrou
and Garcı́a-Sevilla [65] call texture the ‘variation of data at scales smaller than the
scale of interest’. Many are, in fact, the definitions that have been proposed in lit-
erature: the reader may find a small compendium in Ref. [77]. Unfortunately none
of such definition has elicited general consensus, mainly because there is no formal,
mathematical model from which we can infer a quantitative general definition.

2.2 Categorizing texture descriptors

The second critical point – which is actually a direct consequence of the first –
concerns the development of a taxonomy of texture descriptors. Several attempts to
classify texture descriptors have been made so far.

To the best of our knowledge the first attempt dates back to the late 70’s and
was proposed by Haralick [26]. He divided texture descriptors into statistical and
structural, though it was soon recognised that it was quite difficult to draw a sharp
border between the two classes [86, 23]. Such a division was inspired on the pio-
neering work of Julesz, who conjectured that texture discrimination in the human
visual system comes in two forms: perceptive and cognitive [36]. The former pro-
vides an immediate characterization of texture and is mostly statistical, the latter
requires scrutiny and is mostly structural.

Wu et al. [87] refined this two-class taxonomy by splitting the class of statis-
tical methods into five subclasses: spatial gray-level dependence methods, spatial
frequency-based features, stochastic model-based features, filtering methods, and
heuristic approaches. Then, in the late 90’s Tuceryan and Jain proposed a classi-
fication into four categories (i.e.: statistical, geometrical, model-based and signal
processing methods) which gathered a good number of followers and strongly in-
fluenced literature thereupon. Yet not even this classification has been exempt from
criticism, due to the fact that some texture descriptors possess distinctive traits that
belong to more than one class, and therefore a completely crisp separation does not
hold in general. Recently, Xie and M. Mirmehdi [88] have suggested that the four
classes proposed by Tuceryan and Jain should be rather considered as attributes that
one specific method may possess or not. Such a categorization represents, in our
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view, the best attempt to classify texture descriptors so far. Yet, any classification
based on ‘semantic’ categories will never be completely satisfactory, because of
its intuitive and informal nature. Rather, the correct approach should be based on
formal mathematical definitions.

The above mentioned difficulties come up clearly when it comes to find the right
placement to LBP and related methods. Though LBP was proposed as ‘the unifying
approach to the traditionally divergent statistical and structural models of texture
analysis’ [51], there is actually no consensus on this point, due to the lack of a
universally accepted taxonomy. Different authors classify LBP in different ways: as
purely statistical [68], purely structural [30], stochastic [72] or even model-based
[74, 64].

In this contribution we show that LBP and variants that can be easily defined in
a formal way within the HEP. This approach generates no doubt whether a method
pertains to this class or not, and therefore is a step in the direction of defining a
unifying taxonomy of texture descriptors. Before presenting the mathematical for-
malism of our approach we need to digress a bit on the concept of bag of features,
which helps to clarify the ideas presented herein.

3 Bag of features

The orderless ‘bag of features’ model (BoF) derives from the ‘bag of words’ model,
an approach to natural language processing in which a text is represented through
the total number of occurrences of each word that appear in it, regardless of their
ordering [53]. Thus, in this view, the two texts “Spain plays better soccer than Italy”
and “Italy plays better soccer than Spain” are perfectly equivalent. Likewise, the
BoF represents images through the probability of occurrence of certain local fea-
tures (‘textons’), regardless of their spatial distribution. Such a procedure combines
the responses of some local feature detectors obtained at different image locations
into convenient statistical descriptors (e.g.: histograms) that summarize the distribu-
tion of the features over the region of interest [9]. Representing images through the
frequency of a discrete vocabulary of local features has proven widely effective for
image classification tasks and object recognition [93, 56]. Fundamental to this ap-
proach are the five alternative options that we discuss in the next subsections. These
can be viewed as dichotomous design choices and can be conveniently represented
through a binary tree, as in Fig. 1.

3.1 Image sampling: dense vs. sparse

The first design choice is about the feature sampling mechanism. This can be ei-
ther dense or sparse, depending on whether the image is probed exhaustively at
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Fig. 1: Dichotomous design choices in the bag-of-features model

each pixel or not. Though computationally intensive, dense sampling is used very
commonly, mainly because it produces no information loss.

Alternatively one can adopt sparse sampling, where the original image is probed
at a subset of pixels, which are selected according to some convenient criteria.
This has some potential advantages in that it reduces complexity and computa-
tional time, but, on the other hand, may induce significant loss of discrimination
information. The last point, however, is controversial. Jurie and Triggs [37] showed
that sparse sampling often loses a significant amount of information and is outper-
formed by dense sampling, particularly with inhomogeneous images. In contrast
Jiang et al. [34] found comparable results with dense and sparse sampling. As for
the approaches to sparse sampling, many have been proposed in literature. There are
different strategies: they may be image-dependent or image-independent. In the first
case one may either subsample the image to a grid of equally-spaced pixels [14] or
even perform completely random sampling [57]. In the second case one probes the
image at a set of keypoints or ‘salient points’ detected by some feature detectors,
such as the Harris-affine region detector, the Laplacian blob detector [43, 93] or the
scale invariant feature transform (SIFT) [49, 92].
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3.2 Feature type: patches vs. jets

The second design choice is related to the type of local data from which features are
extracted. These may be either image filter responses – usually referred to as jets –
or image patches.

In the first case features are extracted from the output of oriented linear filters
[52, 44, 83, 69]. The use of filters has a long history in texture analysis and has been
justified on the basis of both theoretical and psychophysical considerations. For a
long time it was believed that any transform of the original image patches satisfying
some optimality criteria should always improve the efficiency, when compared with
the original representation [79]. The relation between some classes of filters (e.g.:
Gabor filters) and the human vision system [12] has also been frequently argued in
favour of their use. Theories of sparse representation and compressed sensing have
inspired filtering-based methods too, such as the recently proposed random projec-
tions [47]. Yet filtering is not exempt of problems: the design (and implementation)
of filter banks is not trivial and is likely to be application-dependent. It is known
that parameter tuning is critical and may have significant effects on the results [5].
Moreover the large support that some filters require may be, in some applications,
incompatible with the size of the images.

The supremacy of filter bank-based descriptors for texture analysis has been
questioned by several authors, most notably Varma and Zissermann [81, 84], who
affirmed that filter banks are not strictly necessary, and that using directly grey-scale
intensities in local patches with support as small as 3×3 may result in comparable
or even superior accuracy. This leads to the second approach, that of image patches.
Using image patches is generally faster than using filter responses, and free the user
from having to design complex filter banks. Conversely, they tend to be more sen-
sitive to noise [94], since the change in the value of a single pixel can dramatically
affect the response of the feature detector. In a comparison between the two meth-
ods, Ghita et al. [22] showed that the performances in texture classification offered
by LBP/C and multi-channel Gabor filtering are comparable.

As for LBP and related methods, these have been traditionally considered as
based on image patches. Recently, Ahonen and Pietikäinen, however, correctly
noted that LBP can be viewed as a filter operator based on local derivative filters and
a threshold-based vector quantization function [2]. This interpretation in some sense
smooths the traditional distinction between patch-based and jet-based methods – at
least from a theoretical standpoint. From a practical one, however, we believe that
such a distinction remains meaningful and useful, especially when we consider the
significant differences that exist in the design and implementation of the two ap-
proaches.
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3.3 Partitioning the feature space: a priori vs. a posteriori

The third design choice involves the definition of convenient rules to partition the
feature spaces that arise from either filter responses (jets) or image patches. To this
end there are two alternative strategies, which we refer to as a priori and a posteriori.
The difference between the two is that rules are defined independently of data in
the former, whereas they are learnt from data in the latter. This design choice is
very intriguing since it reflects, in our view, the ancient philosophical debate as to
whether knowledge is attained apart from experience or arises from it [38].

A priori partitioning has been the basis of many approaches proposed in liter-
ature. The simplest of such methods is perhaps regular subdivision of the feature
space into equally-spaced regions (regular binning). The main inconvenience with
this method is that the number of required bins grows exponentially as a function
of space dimensionality and soon far outweighs the number of datapoints avail-
able in a single image with which to populate the histogram, with potential over-
fitting problems (in an experiment Varma and Zissermann clearly demonstrated
that increasing the number of bins decreases the performance [82]). Hash-codes
have been proposed as a partial workaround to this problem [78]. More commonly
a priori partitioning of the feature space is defined through a function that oper-
ates on the grey-scale values of the pixels in a neighbourhood. Typically such a
function is based on operators as simple as pairwise comparisons and thresholding
[28, 61, 50, 10, 75, 54, 15, 48], though other operators such as ranking [32] have
been proposed too. This is the idea LBP&V are based upon, as we shall discuss in
detail in the forthcoming section. Alternatively one can define partitioning criteria
that operate on filter responses instead of image patches. As for this approach, it is
worth mentioning the basic image features (BIF) proposed by Crosier and Griffin
[11], which define a mathematical quantisation of a filter response space into seven
types of local image structure. Likewise the approach of Rouco et al. [69] is based
on quantizing the response of some linear filters into three discrete values through
an a priori-defined ternary thresholding function.

In the opposite strategy, a posteriori partitioning, the partitioning scheme is learnt
from training data. The usual procedure involves the definition of sets of represen-
tative local image features usually referred to as ‘codebooks’. Typical methods to
generate codebooks are based on clustering, which has been used both with image
patches [84] and filter responses [81, 47]. Due to its simplicity and good conver-
gence properties, the iterative k-means is the most widely used algorithm in this
context. Nonetheless, there are some drawbacks with this procedure: it is time con-
suming; it requires the number of clusters as input, and it produces non-deterministic
results if random initialization is used (which is often the case). Furthermore, fre-
quently appearing patterns are not necessarily the most discriminative [21]: indeed
in text analysis, for instance, articles and prepositions are the most frequent words,
but they are not particularly discriminative. Alternative approaches to k-means clus-
tering include vector quantization through self-organising maps [80, 60], adaptive
binning [45, 39] and sparse coding [19].



Final 
draf

t 

au
thor m

an
uscr

ipt

8 F. Bianconi and A. Fernández

The a priori vs. a posteriori dilemma is a subject where scientific interest is cur-
rently high. General considerations suggest that a priori approaches are faster, since
they do not require codebook generation. They also proved quite accurate in a wide
range of practical applications, as demonstrate LBP&V. On the other hand one may
argue that in some specific applications, where features tend to cluster in limited por-
tions of the feature space, a priori partitioning schemes may be scarcely efficient,
whereas a posteriori schemes may me more convenient, since they can be tuned to
the application. Rouco et al. [69] recently suggested that, in principle, a priori parti-
tioning is recommendable for broad-domain applications and large image databases,
whereas a posteriori (data-driven) partitioning schemes suit better small databases
containing few texture classes.

3.4 Feature labelling: hard vs. soft

Once the feature space has been partitioned, one has to label each feature of the
image to process on the basis of the obtained partition. This is the fourth design
choice, which gives rise to two alternative approaches, which we refer to as hard
and soft labelling.

The hard approach consist in assigning an image feature to one single partition
of the feature space [28, 52, 61, 81]. When codebooks are used, this is usually
implemented through the nearest neighbour rule: a feature is assigned the label of
the nearest element in the codebook. This results in a Voronoi tessellation of the
feature space. Although computationally simple, hard labelling has some important
drawbacks, such as sensitivity to noise and limited discriminant power.

The soft approach has emerged as a robust alternative to hard labelling. This is
based on the consideration that, since verbal descriptions of visual characteristics
like colour or a texture are often ambiguous, this ambiguity should be taken into
account in the bag-of-features model [21]. The basic idea in soft assignment is that
a local feature is assigned to more than one partition, or, equivalently, that parti-
tion’s borders are not crisp, but fuzzy. Through convenient membership functions
[76, 3, 1, 33] one can in fact consider a local feature as belonging to more than one
partition. Another possible approach is kernel density estimation, the function of
which is to smooth the local neighborhood of data samples. In the implementation
proposed by Gemert et al. [21] the authors assume that the similarity between an
image feature and a codeword is described by a normal function of the distance.
Recently, the theory and algorithms of sparse coding and sparse representation have
also been proposed to represent a local feature by a linear combination over a code-
book. The ‘weight’ of each element of the codebook on the feature is estimated
through suitable minimization procedures [89, 46].



Final 
draf

t 

au
thor m

an
uscr

ipt

A unifying framework for LBP and related methods 9

3.5 Image representation: histogram vs. signature

The last design choice is about image representation. This can be based on his-
togram or signature. A histogram of a set with respect to a measurement is a fixed-
size vector which reports the frequency of quantified values of that measurement
among the samples [73]. The elements of the vector are usually referred to as bins.
In the context of this paper histograms report how many times each partition into
which the feature space is divided is represented in the image to analyse. In con-
trast, signatures are variable-size structures which report only the dominant clusters
that are extracted from the original data [70]. Each cluster (or node) is represented
by its center and a weight that denotes the size of the cluster. Signatures of differ-
ent images may be therefore different in length, and the order in which clusters are
listed does not matter [43]. Consequently, similarity between histograms and sig-
natures are measured differently: histogram similarity is usually evaluated through
standard distance functions such as Manhattan, Euclidean or χ2, whereas signatures
are compared through the earth movers’ distance.

4 Histograms of equivalent patterns

Different combinations of the five design options discussed in the preceding sec-
tion have been proposed in literature. We coined the term histograms of equivalent
patterns (HEP) to refer to those BoF descriptors that adopt the following design
choices: a) dense image sampling; b) image patches as input data; c) a priori par-
titioning of the features space; d) hard label assignment and e) histogram-based
image representation. Here below we show that these concepts can be easily ex-
pressed in a formal way. The use of a mathematical formalism makes it possible to
determine, unambiguously, whether a texture descriptor belongs to the HEP or not,
and therefore removes the inherent uncertainty of semantic taxonomies of which
we discussed in Sec. 2.2. We also show how LBP and variants can be regarded as
instances of the HEP.

First of all let us introduce the notation to be used henceforth. Let I be an M×N
matrix representing the raw pixel intensities of an image quantized to G grey levels
ranging from 0 to G−1, and Im,n the grey-scale intensity at pixel (m,n).

Definition 1. A texture descriptor is a function F that receives an image I as input
and returns a vector h:

h = F (I) (1)

where h is usually referred to as the feature vector.

Definition 2. Histograms of equivalent patterns (HEP) is a class of texture descrip-
tors for which the k-th element of h can be expressed in the following way:
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Fig. 2: Schematic representation of the HEP framework.

hk =
1
D

mmax

∑
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nmax

∑
n=nmin

δ

[
f
(

xΩ
m,n,T

)
− k
]

(2)

where m and n represent row- and column-wise pixel indices, xΩ
m,n the grey-scale

values of a set of pixels defining a generic neighbourhood Ωm,n around (m,n), T =
[T1, · · · ,Tp, · · · ,TP] a vector of parameters, D a normalizing factor, δ the function
defined in Eq. 7 and f a generic function that returns an integer between 0 and
K−1. The limits of the sums in Equation 2 are intended to guarantee that for each
(m,n) the neighbourhood Ωm,n be fully contained in I.

In plain words the definition is straightforward: a texture descriptor belonging
to the HEP is based on a neighbourhood of predefined shape which scans the im-
age by steps of one pixel. For each position, one among K predefined class labels
is assigned to the neighbourhood, and the corresponding k-th component of h is
incremented by 1/D. Therefore the feature vector represents the probability of oc-
currence of each class (factor 1/D normalizes the feature vector to sum one). Typi-
cally Ωm,n defines a square, rectangular or circular window, but other arrangements
have been proposed too: ellipse, parabola, hyperbola, archimedean spiral and other
settings can be found in Refs. [62, 63, 54, 27].

Eq. 2 represents the most general case. If we drop the dependance on T we obtain
what we call a non-parametric descriptor. Otherwise, if T is present, we say that the
method is parametric. In this case the p-th parameter can be either a function of the
input image (i.e.: Tp = Tp(I)) or not. If at least one parameter is a function of I we
call the method global, otherwise we call it local.

The definition of a texture descriptor belonging to the HEP is therefore a matter
of determining a suitable function f . We refer to it as the kernel function, a concept
we discuss in detail here below. For the sake of simplicity –but without loss of
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generality– we restrict the discussion to 3×3 square neighbourhoods. Now consider
a generic image I and let x3×3

m,n be the set of grey-scale values of a 3× 3 square
neighbourhood centred at (m,n):

x3×3
m,n =

 Im−1,n−1 Im−1,n Im−1,n+1
Im,n−1 Im,n Im,n+1
Im+1,n−1 Im+1,n Im+1,n+1

 (3)

In this case the parameters in Eq. 2 take the following values: mmin = nmin = 2,
mmax = M−1, nmax = N−1 and D = (M−2)(N−2).

Now let M3×3,G be the set of all the possible instances defined by Eq. 3. This
entity is the feature space we introduced in Sec. 3.2 and represents all the possible
grey-scale patterns associated to a predefined neighbourhood (3×3 window, in this
case). In the remainder of this section we use the symbol x to indicate a generic pat-
tern of this type. The HEP partitions the feature space through the a priori-defined
function f , which establishes an equivalence relation ∼ in M3×3,G that acts as fol-
lows:

x1 ∼ x2⇔ f (x1) = f (x2) ∀x1,x2 ∈M3×3,G. (4)

This relation induces a partition in M3×3,G that can be expressed in the following
way:

M3×3,G =
⋃

0≤k≤K−1

M f ,k (5)

where the family of subsets {M f ,k | 0 ≤ k ≤ K− 1} is pairwise disjoint, and each
subset is defined by:

M f ,k = {x ∈M3×3,G | f (x) = k} (6)

If we consider a neighbourhood Ω of generic shape and size, the above reasoning
equally holds: f still defines a partition of the pattern space MΩ ,G. In this case the
number of possible patterns is Gω , where ω is the number of pixels in Ω . In princi-
ple any function f defines a texture descriptor belonging to the HEP. In practice it is
recommendable that f satisfy some reasonable constraints. A sensible criterion, for
instance, could be that the induced equivalence relation be perceptually meaningful,
or, in other words, that similar patterns be mapped into the same equivalence class.
For example, in Ref. [20] the authors quantize 3×3 patches according to a modified
order statistic, and define equivalence classes based on photometry, complexity and
geometry in image space. Another important condition is that f provide effective
dimensionality reduction, i.e. K� G9.

In some cases a texture descriptor can be obtained combining two or more equiv-
alence relations. The two combination approaches that we consider here are con-
catenation and joint description.

Let f1 and f2 be two mappings, and K1 and K2 the dimensions of the correspond-
ing feature vectors. Concatenation generates a new feature vector that contains the
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elements of both f1 and f2, therefore its dimension is K1 +K2. We use the symbol ||
to indicate this operation.

Joint description means that each class is uniquely identified by two labels, each
one generated by a different mapping. Conceptually this operation is very similar to
a Cartesian product, thus we indicate it with the symbol ×. The number of features
is K1K2 in this case. In the implementation adopted here, this type of representa-
tion is serialized into a one-dimensional feature vector, with the convention that the
(k1K2 + k2)-th element corresponds to class labels k1 and k2 of, respectively, f1 and
f2.

5 LBP and variants within the HEP

In this section we review a selection of LBP variants and show that these apparently
divergent texture descriptors are all instances of the HEP. To this end we present a set
of LBP&V and provide, for each, the mathematical formulation inside the HEP. In
presenting the methods we show how this formalization makes it possible to set into
evidence similarities and dissimilarities between the texture descriptors that belong
to this family. To keep things simple we limit the review to the M3×3,G pattern
space, though the formulations presented henceforth can be effortlessly extended to
neighbourhoods of different shape and size.

As a preliminary step we define four functions of the real variable x that are
extensively used throughout the paper. These are:

• the δ function

δ (x) =

{
1, if x = 0
0, otherwise

(7)

• the binary thresholding function

b(x) =

{
1, if x≥ 0
0, if x < 0

(8)

• the ternary thresholding function

t(x,T ) =


0, if x <−T
1, if −T ≤ x≤ T
2, if x > T

(9)

• the quinary thresholding function
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Table 1: Selection of LBP variants considered in this chapter

Method Acronym(s) Kernel function(s) Year Ref.

Texture spectrum TS0 Eq. 12 1990 [28]
Texture spectrum TS1 Eq. 13 1992 [29]
Rank transform RT Eq. 17 1994 [91]

Local binary patterns LBP Eq. 18 1996 [59]
Coordinated clusters representation CCR Eq. 24 1996 [40]

Modified texture spectrum MTS Eq. 19 2003 [90]
Simplified texture spectrum STS Eq. 14 2003 [90]

Simplified texture units STU+,STU× Eqs. 15,16 2003 [50]
Improved local binary patterns ILBP Eq. 20 2004 [35]

Center-symmetric local binary patterns CS-LBP Eq. 22 2006 [31]
Median binary patterns MBP Eq. 21 2007 [25]
Local ternary patterns LTP Eqs. 27–29 2007 [75]

Centralized binary patterns CBP Eq. 23 2008 [18]
Improved local ternary patterns ILTP Eqs. 30–32 2010 [55]
Completed local binary patterns CLBP Eqs. 33,35 2010 [24]

Local quinary patterns LQP Eqs. 38,39 2010 [54]
Binary gradient contours BGC1,BGC2,BGC3 Eqs. 40–42 2011 [15]

Gradient-based local binary patterns GLBP Eq. 44 2011 [30]
Improved binary gradient contours IBGC1 Eq. 43 2012 [17]

q(x,T,T ′) =



2, if x≥ T ′

1, if T ≤ x < T ′

0, if −T ≤ x < T
−1, if −T ′ ≤ x <−T
−2, if x <−T ′

(10)

where the parameters T and T ′ are positive real numbers satisfying T < T ′.
Next, to avoid cluttered equations, let us take out the sub-indices m,n of Eq. 3 and

indicate the set of grey-scale values of a 3×3 neighbourhood in a more manageable
way:

x =

 I7 I6 I5
I0 Ic I4
I1 I2 I3

 (11)

In the above equation Ic is the grey level of the central pixel and I j the grey levels
of the peripheral pixels ( j ∈ {0,1, . . . ,7}). We are now ready to start with the list of
methods belonging to the HEP (Tab. 1). Of each selected technique we briefly recall
the basics and provide the mathematical formulation within the HEP by defining f .
A comprehensive compilation of HEP methods can be found in Ref. [17].
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5.1 Texture spectrum

Texture spectrum, introduced by He and Wang [28], can be considered the precursor
of LBP. In its original formulation it is based on the ternary thresholding function
(Eq. 9) with T = 0. We refer to this method as TS0. In this model each peripheral
pixel of the 3× 3 neighbourhood is assigned a value 0, 1 or 2 when its grey-level
intensity is less, equal or greater than the intensity of the central pixel, respectively.
This defines a set of 38 possible ternary patterns. The corresponding kernel function
is:

fTS0(x) =
7

∑
j=0

t (I j− Ic,0)3 j (12)

Later on the same authors proposed a variation of the method in which T takes
a value different than zero [29]. This improvement should be potentially beneficial
in presence of noise, since a grey-level variation below T does not change a ternary
pattern into another. We indicate this method with the acronym TS1, and the corre-
sponding kernel function is formally analogous to Eq. 12:

fTS1(x,T ) =
7

∑
j=0

t (I j− Ic,T )3 j (13)

5.2 Simplified texture spectrum

Texture spectrum has been the basis of a good number of variations, all with the aim
of reducing the rather high dimensionality of the method. Xu et al. [90] proposed
a simplified version which we indicate here as simplified texture spectrum (STS).
The approach is based on the observation that, as the neighbourhood moves across
the image at steps of one pixel, a generic couple of pixels (c, j) switches into the
symmetric ( j,c). Consequently each comparison between the central pixel and each
pixel in the periphery is performed twice. In order to avoid this redundancy and
reduce complexity, the authors consider the neighbourhood formed by the central
pixel and the four adjacent peripheral pixels of one quadrant only, specifically those
corresponding to indices j∈{4, · · · ,7} (see Eq. 11). This setting reduces the number
of features from 38 to 34. The kernel function can be expressed as follows:

fSTS(x) =
7

∑
j=4

t (Ic− I j,0)3 j−4 (14)
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5.3 Simplified texture units

Madrid-Cuevas et al. [50] proposed two simplified versions of texture spectrum re-
ferred to as simplified texture units. The first one, STU+, considers the neighbour-
hood composed of the central pixel and its vertically- and horizontally-connected
peripheral pixels (i.e.: pixels 0, 2, 4 and 6 in Eq. 11). The second one, STU×, oper-
ates on the neighbourhood formed by the central pixel and its diagonally-connected
peripheral pixels (i.e.: pixels 1, 3, 5 and 7 in Eq. 11). In both cases dimensionality
is reduced from 38 to 34. The corresponding kernel functions are:

fSTU+(x,T ) =
3

∑
j=0

t
(
I2 j− Ic,T

)
3 j (15)

fSTU×(x,T ) =
3

∑
j=0

t
(
I2 j+1− Ic,T

)
3 j (16)

5.4 Rank transform

The rank transform (RT) [91] takes into account the number of pixels in the periph-
ery of the 3×3 region the intensity of which is less than the intensity of the central
pixel. Since this number ranges from zero to eight, there are nine possible patterns.
The kernel function is:

fRT(x) =
7

∑
j=0

b(Ic− I j−1) (17)

5.5 Local binary patterns

Local binary patterns (LBP) [59] have received a great deal of attention in the pattern
recognition community. In the 3× 3 domain the LBP operator thresholds the eight
peripheral pixels of the neighbourhood at the value of the central pixel, thus defining
a set of 28 possible binary patterns. The kernel function is:

fLBP(x) =
7

∑
j=0

b(I j− Ic)2 j (18)

The first appearance of the expression ‘local binary patterns’ dates back to a
work published in 1994 [58]. Further studies, however, revealed that an embryonic
idea of the method had appeared, under a different name, in earlier works too. The
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interested reader may find further details about the origin of this very influential
method in Refs. [66, 17].

5.6 Modified texture spectrum

Modified texture spectrum (MTS) can be considered as a simplified version of LBP,
where only a subset of the peripheral pixels (i.e. pixels 4, 5, 6 and 7 in Eq. 11) is
considered. To be precise the inequality in b is flipped in the original formulation of
MTS [90], but this unimportant difference in no way alters the information that the
method conveys. The kernel function of is:

fMTS(x) =
7

∑
j=4

b(Ic− I j)2 j−4 (19)

5.7 Improved local binary patterns

Improved local binary patterns (ILBP) are based on an idea similar to LBP, the only
difference is that the whole 3×3 neighbourhood is thresholded by its average grey-
scale value [35]. This gives (29− 1) possible binary patterns (the all 0s pattern is
not possible by definition, hence the subtractive term −1 in the equation below).
The kernel function is:

fILBP(x) = b(Ic−Tmean)28 +
7

∑
j=0

b(I j−Tmean)2 j−1 (20)

where Tmean is the average grey-scale value over the whole neighbourhood.

5.8 Median binary patterns

Median binary patterns (MBP) [25] have much in common with ILBP, the only
difference is that MBP thresholds the grey-scale values of the 3×3 neighbourhood
at their median value, instead of their average value. The kernel function can be
expressed as follows:

fMBP(x) = b(Ic−Tmedian)28 +
7

∑
j=0

b(I j−Tmedian)2 j−1 (21)
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5.9 Center-symmetric local binary patterns

Center-symmetric local binary patterns (CS-LBP) [31] are similar to LBP, but em-
ploy a different scheme to compare the pixel in the neighbourhood. Whereas the
central pixel plays a pivotal role in LBP, CS-LBP discards it altogether and consid-
ers the following centre-symmetric couples of pixel values (Eq. 11): (I0, I4), (I1, I5),
(I2, I6) and (I3, I7). Robustness on flat image regions is obtained by thresholding
the gray level differences with a parameter T . This generates a set of 24 possible
patterns. The kernel function can be expressed in the following way:

fCS-LBP(x,T ) =
3

∑
j=0

b
(
I j− I j+4−T −1

)
2 j (22)

5.10 Centralized binary patterns

Centralized binary patterns (CBP) [18] consider the same couples of centre-symmetric
pixels used by CS-LBP plus the central pixel. Relative comparison is based on the
absolute difference of grey-scale values, which is thresholded at a predefined small
positive value T . The kernel function can be formalized as follows:

fCBP(x,T ) = b(|Ic−Tmean|−T )24 +
3

∑
j=0

b
(∣∣I j− I j+4

∣∣−T
)

2 j (23)

where Tmean is defined as in Sec. 5.7.

5.11 Coordinated clusters representation

The coordinated clusters representation (CCR) was originally intended as a texture
descriptor for binary images [40]. It was later on extended to grey-scale images
through a preliminary thresholding step [71], and, recently, to colour images too
[7]. The method is based on the probability of occurrence of the 29 possible binary
instances of a 3×3 window. It is similar to LBP and ILBP, though threshold is global
in this case. The global threshold can be computed in various ways. A possible
approach to estimate it is through isentropic partition [6, 16]. In this case threshold
Tisoentr is the value that divides the grey-scale histogram into two parts of equal
entropy. The kernel function can be expressed as follows:

fCCR(x,Tisoentr) = b(Ic−Tisoentr)28 +
7

∑
j=0

b(I j−Tisoentr)2 j (24)
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5.12 Local ternary patterns

Local ternary patterns [75] can be considered a hybrid between texture spectrum and
local binary patterns. Similarily to texture spectrum, in fact, they make use of the
ternary thresholding function to obtain ternary binary patterns. Each ternary pattern
is split in two binary patterns (lower and upper) through the following rules:

b j,LOWER =

{
1, if t j = 0
0, otherwise

(25)

b j,UPPER =

{
1, if t j = 2
0, otherwise

(26)

where t j and b j represent, respectively, the ternary and binary value corresponding
to pixel j. With this convention the kernel functions that define the distributions
of lower (LTPL) and upper (LTPU) local ternary patterns can be expressed in the
following way:

fLTPL(x,T ) =
7

∑
j=0

b(Ic− I j−T )2 j (27)

fLTPU(x,T ) =
7

∑
j=0

b(I j− Ic−T )2 j (28)

The two descriptors are finally concatenated to form the LTP model:

hLTP = hLTPU||hLTPL (29)

5.13 Improved local ternary patterns

Improved local ternary patterns (ILTP) [55] are an extension of LTP where each
pixel in the neighbourhood is thresholded at the average grey-scale value. Similarly
to LTP the representation is split into a lower and upper part:

fILTPL(x,T ) = b(Tmean− Ic−T )28 +
7

∑
j=0

b(Tmean− I j−T )2 j (30)

fILTPU(x,T ) = b(Ic−Tmean−T )28 +
7

∑
j=0

b(I j−Tmean−T )2 j (31)

where Tmean is defined as in Sec. 5.7. The two descriptors are concatenated to give
the ILTP model:
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hILTP = hILTPH||hILTPL (32)

5.14 Completed local binary patterns

Completed Local Binary Patterns (CLBP) have been recently introduced by Guo et
al. [24] as an extension of local binary patterns. The approach is based on different
combinations of three basic descriptors: CLBP C, CLBP M and CLBP S. The last
is just an alias for standard LBP, already treated in Sec. 5.5.

CLBP C thresholds the central pixel of the 3× 3 neighbourhood at the average
grey-scale value of the whole image, and therefore generates only two binary pat-
terns. The kernel function is:

fCLBP C(x,TĪ) = b(Ic−TĪ) (33)

where

TĪ =

M

∑
m=1

N

∑
n=1

Im,n

MN
(34)

CLBP M considers the possible binary patterns that are defined by the absolute
difference between the grey-scale value of a pixel in the periphery and that of the
central pixel when thresholded with a global parameter. In formulas:

fCLBP M(x,T∆ Ī) =
7

∑
j=0

b(|I j− Ic|−T∆ Ī)2 j (35)

where T∆ Ī is the average value of the difference in grey value between a pixel in the
periphery and the central pixel:

T∆ Ī =

M−1

∑
m=2

N−1

∑
n=2

1

∑
i=−1

1

∑
j=−1
|Im−i,n− j− Im,n|

8(M−2)(N−2)
(36)

In [24] the authors suggest that the three descriptors can be combined in different
ways to give joint and concatenated descriptors, for example: CLBP M× CLBP C,
CLBP S × CLBP M, CLBP M × CLBP S × CLBP C and CLBP S || CLBP M ×
C.
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5.15 Local quinary patterns

In local quinary patterns (LQP) [54] the grey level difference between the central
pixel and the pixels of the periphery is encoded using five discrete levels (i.e.: −2,
−1, 0, 1 and 2) which are computed using two thresholds: T and T ′. LQP is therefore
closely related to LTP, the only difference being that the number of encoding levels
is five in LQP and three in LTP. The quinary pattern is split into four binary patterns
through the following rule:

b j,i =

{
1, if q j = i
0, otherwise

(37)

where b j,i and q j are the binary and quinary value corresponding to pixel j and level
i; i ∈ {−2,−1,1,2}. The kernel function corresponding to each level is:

fLQP,i(x,T,T ′) =
7

∑
j=0

δ
[
q
(
Ic− I j,T,T ′

)
− i
]

2 j (38)

The feature vector is obtained as follows:

hLQP = hLQP,−2||hLQP,−1||hLQP,1||hLQP,2 (39)

5.16 Binary gradient contours

The recently introduced binary gradient contours (BGC) [15], are a family of de-
scriptors based on pairwise comparison of adjacent pixels belonging to one or more
closed paths traced along the periphery of the 3×3 neighbourhood (hence the name
contours). For each closed path a binary pattern is obtained by assigning each pair
of adjacent pixels (i, j) in the path the binary value b(I j− Ii). Since there are several
paths that one can pick out from the 3×3 neighbourhood, different BGC operators
exist. In Ref. [15] we proposed three different operators, which are referred to as
BGC1, BGC2 and BGC3. Both BCG1 and BCG3 are based on one closed path.
In the first case the pixels that define the path are: {0,1,2,3,4,5,6,7,0} (Eq. 11),
therefore the corresponding couples from which the binary values are extracted are:
{(0,1),(1,2), · · · ,(7,0)}. In the second case the path is defined by the following
sequence of pixels: {0,5,2,7,4,1,6,3,0} (couples are defined in the same way).
Both descriptors generate (28− 1) possible different patterns, since, as it happens
with ILBP, the all-0s pattern is, by definition, impossible. In contrast BGC2 em-
ploys two closed paths, which are: {1,7,5,3,1} and {0,6,4,2,0}. In this case each
path generates (24−1) possible patterns, therefore the joint combination of the two
gives (24− 1)2 = 225 possible patterns. The kernel functions of the three models
are reported here below:
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fBGC1(x) =
7

∑
j=0

b
(
I j− I( j+1) mod 8

)
2 j−1 (40)

fBGC2(x) = (24−1)
3

∑
j=0

b
(
I2 j− I2( j+1) mod 8

)
2 j+

3

∑
j=0

b
(
I2 j+1− I(2 j+3) mod 8

)
2 j−24

(41)

fBGC3(x) =
7

∑
j=0

b
(
I3 j mod 8− I3( j+1) mod 8

)
2 j−1 (42)

5.17 Improved binary gradient contours

An extension of BGC1 has been recently proposed [17]. The improved binary gra-
dient contour (IBGC1) includes the central pixel and can be easily derived from the
original formulation by comparing the central pixel value with the average grey-
scale value Tmean over the 3×3 neighbourhood. The kernel function is:

fIBGC1(x) = b(Ic−Tmean)(28−1)+
7

∑
j=0

b
(
Ii− I( j+1) mod 8

)
2 j−1 (43)

where Tmean is defined as in Sec. 5.7.

5.18 Gradient-based local binary patterns

Another LBP-related method is represented by gradient-based local binary patterns
(GLBP) [30]. Here the absolute difference between the central pixel and each pe-
ripheral pixel is thresholded at the mean absolute difference between (I0, I4) and
(I2, I6). In formulas:

fGLBP(x) =
7

∑
j=0

b
(
I+−

∣∣I j− Ic
∣∣)2 j (44)

where:

I+ =
1
2
(|I0− I4|+ |I2− I6|) (45)
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6 Geometrical interpretation

In the preceding section we have provided an algebraic formulation of LBP and
variants in the framework of the HEP. We show that these methods can be viewed
as partitioning operators acting on a high-dimensional space. This is no surprise if
we consider that, in the end, texture analysis is about modeling and understanding
the distribution of a population in a high-dimensional space. As noted by Pothos et
al. [67], many texture descriptors extract different features in number and quality
by providing proper quantization and optimal partitioning of the high-dimensional
space. So are, for instance, Crosier and Griffin’s basic image features [11], through
which the authors establish a direct link between detection of local features and
space partitioning, and the local intensity order pattern (LIOP), recently proposed
by Wang et al. [85]. Local binary patterns and variants are clearly based on this idea
as well (as we show here below), though they have been seldom investigated under
this perspective, and rarely studied under a theoretical viewpoint either. Actually,
we are only aware of two references on this subject [41, 8]; in both the authors
study the probability distribution of local binary patterns and show the high a-priori
probability of uniform patterns.

Now, we would like to give a geometrical interpretation of LBP&V. If we take
a look at the kernel functions of the methods presented in Sec. 5, we soon recog-
nise that these define sets of equalities and/or inequalities in the variables Ic and
I j, j ∈ {0, · · · ,7} (see Eq. 11). Geometrically they represent polytopes in M3×3,G,
i.e.: regions bounded by hyperplanes which are equivalent to polygons in two di-
mensions. The good news is that many things about polytopes are known: efficient
algorithms exist to calculate their exact volume [42] and to count how many dis-
crete integer points fall inside them [4]. This makes it possible to investigate the
theoretical properties of a texture descriptor through the volume distribution of
its corresponding polytopes. In Ref. [15] we showed how this relates to the theo-
retical efficiency of a method: under the assumption of uniformly-distributed and
stochastically-independent grey-scale values this is optimal when the feature space
is partitioned into regions of equal volume.

In order to clarify these ideas we present a motivational example in which we
reduce the dimensionality of the problem. We consider, to this end, an L-shaped
3-pixel neighbourhood like the one depicted in Fig. 3a. Pixel intensities are denoted
by I1, I2 and I3. We assume that grey-scale is continuous rather than discrete, and we
also assume the simplifying hypotheses considered in Ref. [8], namely that pixel in-
tensities are uniformly distributed in the range [0,1] and stochastically-independent.
The feature space is therefore the unitary cube of uniform density represented in
Fig. 3b.

This 3-dimensional model allows polytopes (polyhedra – in this case) to be easily
visualized, a thing that would be impossible in a higher-dimensional space. We now
wish to provide a geometrical representation of LBP&V in this model. For the sake
of simplicity we limit the study to three representative examples: LBP, ILBP and
BGC. Every part into which each method divides the feature space of Fig. 3b can be
labelled through a binary string in the following way:
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I1

I2 I3

(a)

I2

I3

I1

(b)

Fig. 3: L-shaped neighbourhood formed by 3 pixels: (a) layout of pixel intensities,
and (b) corresponding pattern space.

I2

I3

I1

(a) I1 = I2

I2

I3

I1

(b) I2 = I3

I2

I3

I1

(c) I1 = I3

I2

I3

I1

(d) I1 = Tmean

I2

I3

I1

(e) I2 = Tmean

I2

I3

I1

(f) I3 = Tmean

Fig. 4: Planes used to split the pattern space

LBP(I1, I2, I3) = [b(I1− I2) b(I3− I2)]2 (46)
ILBP(I1, I2, I3) = [b(I1−Tmean) b(I2−Tmean) b(I3−Tmean)]2 (47)

BGC1(I1, I2, I3) = [b(I1− I2) b(I2− I3) b(I3− I1)]2 (48)

The above equations can be easily interpreted, geometrically, if we consider that
each of the following operations: b(I1 − I2), b(I2 − I3), b(I1 − I3), b(I1 − Tmean),
b(I2−Tmean) and b(I3−Tmean), corresponds to a ‘cut’ in the pattern space through
each of the planes represented in Figs. 4a-4d.

Now let’s start to see what happens with LBP (Eq. 46). This operator divides the
pattern space into the four polyhedra depicted in Fig. 5. Simple calculations show
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112 102 012 002

Fig. 5: Polyedra associated to LBP along with their corresponding binary codes

that the polyhedra are not the same volume: the volume of polyhedra 112 and 002
is 2

6 , while the volume of polyhedra 102 and 012 is 1
6 . Thus the partition induced

by this operator is sub-optimal, therefore we expect a theoretical efficiency below 1.
The exact value in fact is:

eLBP =
−2× ( 2

6 log 2
6 +

1
6 log 1

6 )

log4
=

1.9183
2

= 0.9591 (49)

Likewise, we can repeat the same reasoning for ILBP (Eq. 47). In this case it is
important to point out, preliminarily, the binary string 0002 is impossible by defini-
tion, since the three conditions: I1 < Tmean, I2 < Tmean and I3 < Tmean cannot hold at
once. The binary string 1112 also deserves special attention: in this case the three
conditions b(I1−Tmean) ≥ 0, b(I2−Tmean) ≥ 0 and b(I3−Tmean) ≥ 0 are satisfied
simultaneously if I1 = I2 = I3, which is the equation of the main diagonal of the pat-
tern space (i.e.: unitary cube) passing through the origin of coordinates. This results
in a degenerate polytope (i.e.: line segment) of dimension one and null volume. The
polyhedra corresponding to the remaining six binary strings are depicted in Fig. 6.
Note that these six polyhedra have the same volume ( 1

6 ), therefore the partition is
optimal. The corresponding efficiency is in fact 1:

eILBP =
−6× 1

6 log 1
6

log6
= 1 (50)

1112 1102 1012 1002 0112 0102 0012

Fig. 6: Polyedra associated to ILBP along with their corresponding binary codes

Finally, we conclude the examples considering BGC1 (Eq. 48). In this case we
have that the string 0002 is impossible by definition, due to the fact that the three
conditions I1 < I2, I2 < I3 and I3 < I1 cannot be satisfied simultaneously. The binary
string 1112 also deserves special attention. Similarly to ILBP, we note that the three
following conditions b(I1− I2) ≥ 0, b(I2− I3) ≥ 0 and b(I3− I1) ≥ 0 are satisfied
simultaneously if I1 = I2 = I3, which again is the diagonal from the origin to the



Final 
draf

t 

au
thor m

an
uscr

ipt

A unifying framework for LBP and related methods 25

point (1,1,1). The polyhedra corresponding to the remaining six binary strings are
represented in Fig. 7. Notice that these six polyhedra have the same volume ( 1

6 ). The
entropy of the corresponding codebook can be calculated as:

eBGC1 =
−6× 1

6 log 1
6

log6
= 1 (51)

1112 1102 1012 1002 0112 0102 0012

Fig. 7: Polyedra associated to BGC1 along with their corresponding binary codes

The examples provided above, though simplified, help us understand the ratio-
nale behind local binary patterns and related methods. In particular they show how
the kernel function relates to the way the feature space is partitioned. All the pat-
terns belonging to such partition are considered equivalent, and can be represented
through a unique arbitrary symbol. The set of such symbols can be regarded as
an alphabet to represent textures. Since we assumed, in this example, uniformly-
distributed and stochastically independent grey-scale intensities, the volume of each
subdivision represents the probability that a texture descriptor assigns, a priori, to
that partition, and therefore to the corresponding symbol. From information theory
we know that the efficiency of an alphabet is maximum when its symbols are equally
likely, that is to say when the entropy of the histogram representing the probability
distribution of each symbol is maximum. This clarifies the concept of theoretical
efficiency introduced above. If we leave the simplified realm of 3-pixel, continous-
valued, L-shaped neighbourhood (Fig. 3), and make for the standard domain of, for
instance, 3× 3 neighbourhoods of discrete grey-level intensities, these considera-
tions equally hold, but with some differences. In Ref. [8] the curious reader can find
an in extenso calculation of polytopes’ volumes for LBP3×3 and LBP8,1 both in the
continuous and discrete domain.

7 Conclusions and open issues

In this paper we have proposed a unifying framework for local binary patterns and
variants which we refer to as histograms of equivalent patterns (HEP). Starting from
a discussion on some basic issues in texture analysis – such as the definition of tex-
ture itself and the classification of the multitude of texture descriptors – we have
digressed about the concept of bag-of-features. Within this idea we have identified
five dichotomous choices that are fundamental in designing texture descriptors: a)
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image sampling (dense or sparse?); b) type of features (patches or jets?); c) space
partitioning (a priori or a posteriori?); d) label assignment (hard or soft?) and e)
image representation (histogram or signature?). We have shown which choices are
adopted by the HEP and how these can be formalized mathematically. This enables
local binary patterns and variants to be expressed through a common formalism and
sets into evidence that they can all be viewed as instances of the HEP. In the last part
of the chapter we have given a geometrical reading of these methods showing how
they partition the feature space into polytopes. This interpretation makes it possi-
ble to study some intrinsic theoretical properties of the methods, and suggests pos-
sible directions for future research: this could be focused on studying partitioning
schemes (i.e.: kernel functions) that maximize the theoretical amount of information
conveyed by the descriptor, and, possess, at the same time, some type of invariance,
such as robustness against against rotation, grey-scale transformations or viewpoint
changes.
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60. T. Ojala, M. Pietikäinen, and J. Kyllönen. Gray level cooccurrence histograms via learning
vector quantization. In Proceedings of the 11th Scandinavian Conference on Image Analysis
(SCIA 1999), pages 103–108, Kangerlussuaq, Greenland, 1999.
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