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Texture description through histograms of equivalent patterns
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Abstract The aim of this paper is to describe a general

framework for texture analysis which we refer to as the

HEP (histograms of equivalent patterns). The HEP, of

which we give a clear and unambiguous mathematical

definition, is based on partitioning the feature space

associated to image patches of predefined shape and

size. This task is approached by defining, a priori, suit-

able local or global functions of the pixels’ intensities.

In a comprehensive survey we show that diverse tex-

ture descriptors, such as co-occurrence matrices, gray-

level differences and local binary patterns, can be seen

all to be examples of the HEP. In the experimental

part we comparatively evaluate a comprehensive set of

these descriptors on an extensive texture classification

task. Within the class of HEP schemes, improved lo-

cal ternary patterns (ILTP) and completed local binary
patterns (CLBP) emerge as the best of parametric and

non-parametric methods, respectively. The results also

show the following patterns: 1) higher effectiveness of

multi-level discretization in comparison with binariza-

tion; 2) higher accuracy of parametric methods when
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compared to non-parametric ones; 3) a general trend of

increasing performance with increasing dimensionality;

and 4) better performance of point-to-average thresh-

olding against point-to-point thresholding.
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1 Introduction

Texture analysis is an area of intense research. The keen

interest in this topic stems from the important role

that it plays in many disciplines and related applica-

tions: computer-assisted diagnosis, remote sensing, sur-

face grading, defect detection and food inspection are

just some examples where texture analysis, is, nowa-

days, a standard. It is curious that such a widely used

concept – texture – has not found a general consensus

regarding an explicit definition. Even experienced re-

searchers do not seem at ease when it comes to defining

texture, preferring instead to characterize it by stating

what it is and what it is not [18].

Whereas defining texture has proven quite challeng-

ing so far, many methods have been proposed to de-

scribe it in a quantitative way. So many, indeed, that

the whole set has been recently referred to as ‘a galaxy

of texture features’ [127]. Various authors have tried

to put order to this galaxy through suitable classifi-

cation schemes. A first subdivision was proposed by

van Gool et al. into statistical and structural meth-

ods [27]. Later on Tuceryan and Jain [108] introduced

a taxonomy in four categories (statistical, geometrical,

model based and signal processing methods) which has

received a great deal of attention in the computer vi-

sion community [78,132,100,101]. More recently Sonka
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et al. described a classification framework based on sta-

tistical, syntactic and hybrid methods [104]. It has been

argued that a crisp distinction among these categories

could be not entirely satisfactory, since there are meth-

ods that present distinctive traits belonging to more

than one class. Concerning this, Xie and Mirmehdi [127]

suggested that the categories presented in Ref. [108]

should rather be regarded as attributes that one spe-

cific method may possess or not. This ‘fuzziness’ could

be related to the lack of a formal definition of the above

categories, which are based on intuitive attributes (i.e.

statistical, structural, etc.) rather than formal, mathe-

matical definitions. The aim of this paper is, indeed, to

investigate a class of texture descriptors that can be eas-

ily defined in a formal way, as we will show in Section

2.2, therefore generating no doubt whether a method

pertains to this class or not. This class includes those

methods that characterize a texture image through the

probability of occurrence of the patterns associated to a

neighbourhood of given size and shape. For reasons that

will become clear shortly, we identify this class with the

acronym HEP (Histograms of Equivalent Patterns). In

the remainder of the paper we show that many renown

methods such as texture spectrum, local binary pat-

terns and co-occurrence matrices belong to the HEP,

and can be regarded as variations of the same underly-

ing idea. The proposed framework gives also a chance

to elaborate on some basic concepts in texture analysis

such as the dichotomy between unlearnt (a priori) vs.

learnt (a posteriori) feature systems, an issue that we

discuss in detail in Sec. 5.1.

Literature review shows that no attempts to present

these methods in a comprehensive and unifying frame-

work have been proposed hitherto. We deem nonethe-

less it opportune to mention two relevant works in which

subsets of the methods studied herein are included in

comparative reviews. Nanni et al. [77] compared the

performance of some LBP-based methods on a set of

classification tasks related to biomedical images. Like-

wise, Huang et al. [48] presented a survey of LBP-based

approaches for facial image analysis. Both references are

very recent, providing evidence for the high interest in

this topic.

The remainder of the manuscript is organized as

follows. After an introductory discussion about the un-

derlying concepts (Sec. 2.1), we introduce the mathe-

matics of the HEP in Sec. 2.2. In Sec. 3 we present a

review of the methods that belong to the framework.

The possible extensions of the framework are discussed

in Sec. 4. In Sec. 5 we discuss about two fundamental

issues in texture analysis (dichotomies a priori vs. a

posteriori and image patches vs. filter responses) and

put the HEP in the context of this debate. In Sec. 6 we

present an extensive comparative experimental study.

Final considerations (Sec. 7) conclude the paper.

2 Histograms of equivalent patterns

2.1 Basic concepts

There is a general consensus, in literature, about the

fact that stationary texture images – i.e.: images con-

taining a single type of texture [94] – can be conve-

niently characterized through the probability distribu-

tion of the possible grey-scale instances of a predefined

neighbourhood [66]. These local features, usually re-

ferred to as texels or textons, are frequently repeated el-

ements that make up the texture’s structure. Orderless

sets of such elements – sometimes referred to as ‘bag-

of-features’ – have been proved to be highly descriptive

(and predictive) of a certain texture class [131]. Their

probability could be in principle estimated through a

histogram that measures the frequency of occurrence

of the different grey-scale patterns throughout the im-

age. To compute such histogram, one makes the neigh-

bourhood move by steps of one pixel across the image,

and at each position increments the bin corresponding

to the detected pattern by one unit. Although this ap-

proach results attractive for its conceptual simplicity, a

straightforward application of the method is impracti-

cal, since the number of entries in the histogram would

be overwhelmingly large, even for small neighbourhoods

– if we were to take into account all the possible pat-

terns. Considering that the typical depth of digitization

of most commercial imaging devices is 256, the num-

ber of different grey-scale patterns for a 3 × 3 square
neighbourhood would be 2569 = 272, which means a

feature vector of approximately 4.7×1021 components.

Since the number of possible patterns is several orders

of magnitude greater than the number of image pixels,

even for high resolution imagery, the vast majority of

histogram bins would remain empty. Such an extremely

sparse, ultra high-dimensional histogram would provide

an unreliable estimation of the underlying distribution

and have scarce – if any – discriminant power in im-

age description [63]. Moreover, the amount of memory

required to store one of such histograms would largely

exceed the capacity of the currently available comput-

ers. The simplest way to reduce the joint histogram

dimensionality would be decreasing the number of grey

levels. This is not of great help, however, since the num-

ber of required bins gets significantly large even with

few grey levels (a 3 × 3 neighbourhood would require

49 = 262144 bins with as few as four grey levels). Any

method belonging to the HEP deals with this problem

by defining a partition of the pattern space into classes
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of equivalent patterns, and by merging the histogram

bins of the equivalent ones. The number of classes K

into which the pattern space is subdivided represents

the dimensionality of the method (throughout the pa-

per we assume that classes are labelled from 0 to K−1).

The problem is therefore reduced to defining a suitable

criterion for partitioning the pattern space. Several cri-

teria have been proposed in the past. They represent

an ample family of texture descriptors which share the

same underlying principle, though they have been de-

veloped and presented independently in literature, and

look rather unrelated. The methods of this family have

a number of important advantages: they are concep-

tually simple, easy to implement and reasonably fast.

Some of them are very popular in the computer vision

community, such as LBP and related methods.

In the following section we restate the concepts sum-

marized here in mathematical language. In particular

we show that the whole family and each method be-

longing to it can be expressed precisely and unambigu-

ously.

2.2 Formal definition

A mathematical definition of the HEP makes it possible

to avoid the uncertainty that some of the classifying

schemes proposed thus far entail.

First of all we introduce the notation to be used

henceforth. Let I be an M ×N matrix representing the

raw pixel intensities of an image quantized to G grey

levels ranging from 0 to G− 1, and Im,n the grey-scale

intensity at pixel (m,n).

Definition 1 A texture descriptor is a function F that

receives an image I as input and returns a vector h:

h = F (I) (1)

where h is usually referred to as the feature vector.

Definition 2 Histograms of equivalent patterns (HEP)

is a class of texture descriptors for which the k-th ele-

ment of h can be expressed in the following way:

hk =
1

D

mmax∑
m=mmin

nmax∑
n=nmin

δ
[
f
(
xΩm,n,θ

)
− k
]

(2)

where m and n represent row- and column-wise pixel

indices, xΩm,n the grey-scale values of a set of pixels

defining a generic neighbourhood Ωm,n around (m,n),

θ a vector of parameters computed from the whole im-

age, D a normalizing factor, δ the function defined in

Eq. 7 and f a generic function that returns an integer

between 0 and K−1. The limits of the sums in Equation

2 are intended to guarantee that Ωm,n be fully enclosed

inside the image I.

In plain words the definition is straightforward: a

texture descriptor belonging to the HEP is based on

a neighbourhood of predefined shape which is moved

along the image by steps of one pixel. For each position,

one among K predefined class labels is assigned to the

neighbourhood, and the corresponding k-th component

of h is incremented by 1/D. Therefore the feature vec-

tor represents the probability of occurrence of each class

(factor 1/D normalizes the feature vector to sum one).

Most commonly Ωm,n defines a square, rectangular or

circular window, but other arrangements have also been

proposed in literature [2,74,91–93]. It is worth spend-

ing a couple of words about the meaning of θ. This

represents a vector of parameters computed from the

whole image, such as, for instance, a global threshold

for binarization. Therefore Eq. 2 typifies a global tex-

ture descriptor, namely a descriptor that is based on –

or, in some way, employs – global features. If we drop

the dependence on θ, we obtain a subclass of texture

descriptors belonging to the HEP that rely on local fea-

tures only: we refer to them as local texture descriptors.

The definition of a texture descriptor belonging to

the HEP is therefore a matter of determining a suit-

able function f . We refer to it as the kernel function.

We discuss this concept in detail here below. For the

sake of simplicity – but without loss of generality – we

restrict the discussion to 3× 3 square neighbourhoods.

We believe this decision is supported both by isotropy

and easiness-of-implementation considerations, as well

as by the fact that most applications reported in litera-

ture are based on this setting. Consider a generic image

I and let x3×3
m,n be the set of grey-scale values of a 3× 3

square neighbourhood centred at (m,n):

x3×3
m,n =

 Im−1,n−1 Im−1,n Im−1,n+1

Im,n−1 Im,n Im,n+1

Im+1,n−1 Im+1,n Im+1,n+1

 (3)

In this case the parameters in Eq. 2 take the fol-

lowing values: mmin = nmin = 2, mmax = M − 1,

nmax = N − 1 and D = (M − 2)(N − 2).

Now let M3×3,G be the set of all the possible in-

stances defined by Eq. 3 and #M3×3,G its cardinality.

We refer to this entity as the pattern space, since it rep-

resents all the possible grey-scale patterns associated to

a predefined neighbourhood (3×3 window, in this case).

In the remainder of this section we use the symbol x to

indicate a generic pattern of this type. As mentioned
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in Sec. 1, describing a texture directly through the fre-

quency of occurrence of the elements ofM3×3,G would

result in a feature vector of 2569 components (assuming

G = 256). The HEP deals with such a high dimensional

feature space by partitioning M3×3,G into groups of

equivalent patterns through f . This function, in fact,

defines an equivalence relation ∼ in M3×3,G that acts

as follows:

x1 ∼ x2 ⇔ f(x1) = f(x2) ∀x1,x2 ∈M3×3,G. (4)

This relation induces a partition in M3×3,G that

can be expressed in the following way:

M3×3,G =
⋃

0≤k≤K−1

Mf,k (5)

where the family of subsets {Mf,k | 0 ≤ k ≤ K − 1} is

pairwise disjoint, and each subset is defined by:

Mf,k = {x ∈M3×3,G | f(x) = k} (6)

If we consider a neighbourhood Ω of generic shape

and size, the above reasoning equally holds: f still de-

fines a partition of the pattern space MΩ,G. In this

case the number of possible patterns is Gω, where ω is

the number of pixels in Ω. In principle any function f

defines a texture descriptor belonging to the HEP. In

practice it is recommendable that f satisfy some rea-

sonable constraints. A sensible criterion, for instance,

could be that the induced equivalence relation be per-

ceptually meaningful, or, in other words, that similar

patterns be mapped into the same equivalence class.

Another important condition is that f provide effective

dimensionality reduction, i.e. K � G9.

The concept of space partitioning, upon which are

based not only the methods considered herein, but many

others too, has gone rather unnoticed in literature. It

was only recently, in fact, that Griffin et al. [29,16] did

very clearly set into evidence this concept establishing a

direct link between detection of local features and space

partitioning. The main difference with the HEP – which

deals directly with image patches without previous fil-

tering – is that the method presented in Ref. [16] is

based on partitioning the response space (also referred

to as jet space) obtained transforming the original im-

age through a set of Gaussian-derivative filters.

2.3 Combinations of mappings

In some cases, which will be considered in the remain-

der of the paper, a texture descriptor can be obtained

combining two or more equivalence relations. The two

combination approaches that we consider here are con-

catenation and joint description.

Let f1 and f2 be two mappings, and K1 and K2 the

dimensions of the corresponding feature vectors. Con-

catenation generates a new feature vector that contains

the elements of both f1 and f2, therefore its dimension

is K1 +K2. We use the symbol || to indicate this oper-

ation.

Joint description means that each class is uniquely

identified by two labels, each one generated by a differ-

ent mapping. Conceptually this operation is very simi-

lar to a Cartesian product, thus we indicate it with the

symbol ×. The number of features is K1K2 in this case.

In the implementation adopted here, this type of rep-

resentation is serialized into a one-dimensional feature

vector, with the convention that the (k1K2 + k2)-th el-

ement corresponds to class labels k1 and k2 of, respec-

tively, f1 and f2.

2.4 Geometrical interpretation

We have already pointed up that defining a texture de-

scriptor belonging to the HEP is equivalent to parti-

tioning an ω-dimensional space, where ω is the number

of pixels in the neighbourhood. We can therefore rein-

terpret the overall problem from the viewpoint of high-

dimensional geometry. It is interesting to notice that

the methods published so far, which are described in

detail in Sec. 3, define partitions that can be expressed

through systems of linear equalities and inequalities in

the variables Im,n (Eq. 3). Geometrically these equa-

tions represent polytopes in the ω-dimensional space.

These are convex figures bounded by hyperplanes, and

can be considered the analogue of polygons in two di-

mensions and polyhedra in three dimensions [103]. Poly-

topes have been studied intensely and most facts about

them are now known, such as how to compute their

volume and enumerate integer points in them [3]. Es-

tablishing a direct link between polytopes and texture

descriptors makes it possible to derive theoretical prop-

erties of the latter by studying the corresponding poly-

topes, as suggested in [7].

3 Revisiting the existing methods

In the preceding section we stated that generating a

texture descriptor belonging to the HEP is a matter

of determining a function f which defines a suitable

partition of the pattern space MΩ,G. We present, in

this section, a review of the main approaches reported

in literature. As mentioned in Sec. 2.2, we limit the
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review to theM3×3,G pattern space. Extensions of the

framework, including neighbourhoods of different shape

and size, rotation invariance and other adjustments are

discussed in Sec 4.

As a preliminary step we define four functions of the

real variable x that are extensively used throughout the

paper. These are:

– the δ function

δ(x) =

{
1, if x = 0

0, otherwise
(7)

– the binary thresholding function

ξ(x) =

{
1, if x ≥ 0

0, if x < 0
(8)

– the ternary thresholding function

η∆(x) =


0, if x < −∆
1, if −∆ ≤ x ≤ ∆
2, if x > ∆

(9)

– the quinary thresholding function

ψ∆1,∆2
(x) =



2, if x ≥ ∆2

1, if ∆1 ≤ x < ∆2

0, if −∆1 ≤ x < ∆1

−1, if −∆2 ≤ x < −∆1

−2, if x < −∆2

(10)

where ∆, ∆1 and ∆2 are positive real numbers; ∆1 <

∆2.

Next, for the sake of simplicity, let us take out the

sub-indices m,n of Eq. 3 and indicate the set of grey-

scale values of a 3 × 3 neighbourhood in a more man-

ageable way:

x =

 I7 I6 I5I0 Ic I4
I1 I2 I3

 (11)

In the above equation Ic is the grey level of the

central pixel and Ij the grey levels of the peripheral

pixels (j ∈ {0, 1, . . . , 7}).
We are now ready to start with the list of methods

belonging to the HEP. The methods are presented in

chronological order and summarized in Tab. 1. Of each

technique we briefly recall the basics and provide the

mathematical formulation within the HEP by defining

f .

3.1 Local methods

3.1.1 Grey level co-occurrence matrices

Haralick’s grey level co-occurrence matrices (GLCM)

[34] measure the joint probability of the grey-levels of

two pixels standing in a predefined relative position.

Within the 3 × 3 window the standard approach [34]

considers the four one-pixel displacements correspond-

ing to directions 0◦, 45◦, 90◦ and 135◦. The kernel func-

tion can therefore be written as follows:

fGLCM,j(x) = GIc + Ij (12)

where j ∈ {4, · · · , 7}. The feature vector h is obtained

by averaging the four vectors hGLCM,j corresponding to

each direction:

hGLCM =
1

4

7∑
j=4

hGLCM,j (13)

Note that Eq. 12 serializes what it is usually re-

ferred to as the “co-occurrence matrix” into a vector

whose (GIc + Ij)-th element corresponds to the (Ic, Ij)

element of the matrix. In the HEP the co-occurrence co-

efficients defined by Eq. 12 are used directly as texture

features, as proposed in Refs. [116,89]. The resulting di-

mension is therefore G2. Alternatively one can use syn-

thetic statistical descriptors (i.e.: energy, entropy, corre-

lation, contrast, etc.) extracted from the co-occurrence

coefficients [94,12,28,79].

3.1.2 Gray level differences

Gray level differences (GLD) [120] are based on the

probability distribution of the absolute difference be-

tween the grey levels of two pixels standing in a prede-

fined relative position. The kernel function in this case

is:

fGLD,j(x) = |Ic − Ij | (14)

Similarly to GLCM, the feature vector is obtained

by averaging the four vectors hGLD,j corresponding to

the orientations 0◦, 45◦, 90◦ and 135◦:

hGLD =
1

4

7∑
j=4

hGLD,j (15)
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Table 1: Summary of texture descriptors belonging to the HEP.

Name Acronym Dim. Ker. fun. Ref. Year

Local methods
Grey level co-occurrence matrices GLCM G2 Eq. 12 [34] 1973

Grey level differences GLD G Eq. 14 [120] 1976
Sum and difference histograms SDH 2(2G− 1) Eqs. 16,17 [110] 1986

Texture spectrum (0) TS0 38 Eq. 20 [38] 1990
Texture spectrum (∆) TS∆ 38 Eq. 21 [40] 1992

Rank transform RT 9 Eq. 22 [129] 1994
Reduced texture units RTU 45 Eq. 27 [58] 1995

Gray level texture co-occurrence spectrum GLTCS+ 4! Eq. 28 [45] 1996
Local binary patterns LBP, CLBP S 28 Eq. 29 [82] 1996

Simplified texture spectrum STS 34 Eq. 30 [128] 2003
Simplified texture units (+) STU+ 34 Eq. 31 [71] 2003
Simplified texture units (×) STU× 34 Eq. 32 [71] 2003
Modified texture spectrum MTS 24 Eq. 33 [128] 2003

Improved local binary patterns ILBP 29 − 1 Eq. 34 [50] 2004
Gradient texture unit coding GTUC 2 · 37 Eq. 37 [13] 2004

3D Local Binary Patterns 3DLBP 4 · 28 Eqs. 29,38 [46] 2006
Center-symmetric local binary patterns CS-LBP 24 Eq. 40 [42] 2006

Median binary patterns MBP 29 − 1 Eq. 41 [33] 2007
Local ternary patterns LTP 2 · 28 Eqs. 44,45 [107] 2007

Centralized binary patterns CBP 25 Eq. 47 [24] 2008
Improved center-symmetric local binary patterns (D) D-LBP 24 Eq. 49 [126] 2009
Improved center-symmetric local binary patterns (ID) ID-LBP 24 Eq. 50 [126] 2009

Improved local ternary patterns ILTP 2 · 29 Eqs. 52,53 [75] 2010
Local quinary patterns LQP 4 · 28 Eq. 56 [74] 2010

Binary gradient contours (1) BGC1 28 − 1 Eq. 58 [22] 2011
Binary gradient contours (2) BGC2 28 − 1 Eq. 59 [22] 2011
Binary gradient contours (3) BGC3 (24 − 1)2 Eq. 60 [22] 2011

Center-symmetric texture spectrum CS-TS∆ 34 Eq. 61 [130] 2011
Improved center-symmetric texture spectrum ICS-TS∆ 2 · 32 Eqs. 62,63 [130] 2011

Gradient-based local binary patterns GLBP 28 Eq. 65 [41] 2011
Improved binary gradient contours (1) IBGC1 2 · (28 − 1) Eq. 67 This paper

Global methods
Binary texture co-occurrence spectrum BTCS+ 24 Eq. 68 [90] 1991

Coordinated clusters representation CCR 29 Eq. 69 [61] 1996
Completed local binary patterns (C) CLBP C 2 Eq. 70 [31] 2010
Completed local binary patterns (M) CLBP M 28 Eq. 72 [31] 2010

3.1.3 Sum and difference histograms

Sum and difference histograms [110] are conceptually

similar to GLD, but, instead of considering the abso-

lute difference of two grey-scale values, they take into

account either their sum (sum histogram – SH) or differ-

ence (difference histogram – DH). The kernel functions

are:

fSH,j(x) = Ic + Ij (16)

fDH,j(x) = (Ic − Ij) + (G− 1) (17)

for sum and difference histogram respectively. The term

(G− 1) in Eq. 17 guarantees that the function returns

non negative integers. The two resulting feature vectors

are concatenated into a descriptor referred to as sum

and difference histograms (SDH):

hSDH,j = hDH,j ||hSH,j (18)

Finally, the concatenation of the four histograms

corresponding to orientations 0◦, 45◦, 90◦ and 135◦

leads to the implementation proposed in Ref. [110],

which is the one adopted here:

hSDH = hSDH,4||hSDH,5||hSDH,6||hSDH,7 (19)

3.1.4 Texture spectrum

Texture spectrum, introduced by He and Wang [38],

can be considered the precursor of a set of more re-

cent methods such as local binary patterns and the like.

In its original formulation it is based on the ternary

thresholding function (Eq. 9) with ∆ = 0. We refer to

this method as TS0. In this model each peripheral pixel

of the 3×3 neighbourhood is assigned a value 0, 1 or 2 if

its grey-level intensity is less, equal or greater than the

intensity of the central pixel, respectively. This defines

a set of 38 possible ternary patterns. The corresponding

kernel function is:
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fTS0(x) =

7∑
j=0

3jη0 (Ij − Ic) (20)

Later on the same authors described a variation of

the method where ∆ takes a value different than zero

[40]. This improvement should be potentially beneficial

in presence of noise, since a grey-level variation below

∆ does not change a ternary pattern into another. We

indicate this method with the acronym TS∆, and the

corresponding kernel function is formally analogous to

Eq. 20:

fTS∆(x) =

7∑
j=0

3jη∆ (Ij − Ic) (21)

3.1.5 Rank transform

The rank transform (RT) [129] takes into account the

number of pixels in the periphery of the 3×3 region the

intensity of which is less than the intensity of the central

pixel. Since this number ranges from zero to eight, this

results in a set of nine possible patterns. The kernel

function is:

fRT(x) =

7∑
j=0

ξ (Ic − Ij − 1) (22)

3.1.6 Reduced texture units

Reduced texture units (RTU) [58] can be viewed as a

compressed version of texture spectrum which considers

only the total number of 0s, 1s and 2s that appear in the

periphery of the 3 × 3 neighbourhood after the action

of the ternary thresholding function η0. It is convenient

to observe that the method generates as many features

as the number of non-negative integer solutions to the

equation α0 + α1 + α2 = 8, where α0, α1 and α2 are

the number of 0s, 1s and 2s, respectively. This problem

is the same as counting the number of ways w through

which n objects can be placed into r distinct cells, which

is usually referred to as the occupancy problem. The

solution turns out to be [20]:

w =

(
n+ r − 1

r − 1

)
(23)

In this case, since n = 8 and r = 3, the number

of features which result is 45. Now, let α0 and α1 be

the number of 0s and 1s in the periphery after ternary

thresholding:

α0 =

7∑
j=0

δ [η0 (Ij − Ic)] (24)

α1 =

7∑
j=0

δ (Ij − Ic) (25)

In order to derive a compact expression for the ker-

nel function, let us observe that this can be viewed as a

way to encoding all the possible couples (α0, α1) which

satisfy the constraint α0 + α1 ≤ 8. Geometrically this

is equivalent to listing all the lattice points in the 2-

simplex of vertices (0, 0), (8, 0) and (0, 8), a problem

which leads to the following expression:

fRTU(x) = α0 +

7∑
r=α1

7∑
s=r

1 (26)

We can easily compute the double sum in the above

equation and give the kernel function the following sim-

ple form:

fRTU(x) = α0 +
(8− α1) (9− α1)

2
(27)

3.1.7 Gray level texture co-occurrence spectrum

The gray level texture co-occurrence spectrum [45] con-

siders the probability of occurrence of the possible states
(orderings) that arise when the pixels of the neighbour-

hood are sorted in descending order by their grey-scale

value. Given a neighbourhood of predefined size and

shape, the number of possible orderings is the num-

ber of permutations of ω objects, where ω is the num-

ber of pixels of the neighbourhood. Consequently the

approach generates ω! features. In the implementation

adopted here, which we refer to as GLCTS+, we con-

sidered the neighbourhood formed by pixels 0, 2, 4 and

6. The mathematical formulation that we propose here

is based on Lehmer’s code [1]:

fGLTCS+(x) =

3∑
i=1

4∑
j=i+1

i! ξ[Iπ−1(j) − Iπ−1(i)] (28)

where π−1(k) represents the index of the pixel whose

intensity occupies the k-th position in the list sorted in

ascending order. In this case positions range from 1 to

4.
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3.1.8 Local binary patterns

Local binary patterns (LBP) have received a great deal

of attention in the pattern recognition community [65].

In the 3 × 3 domain the LBP operator thresholds the

eight peripheral pixels of the neighbourhood at the value

of the central pixel, thus defining a set of 28 possible

binary patterns. The kernel function is:

fLBP(x) =

7∑
j=0

2jξ (Ij − Ic) (29)

It is convenient at this point to digress a bit about

the origin of this very influential method. Related liter-

ature has always had it that LBP was developed within

the Machine Vision Group at the University of Oulu,

Finland. Perhaps this belief relies on a technical report

[35], where members of the group mention a forthcom-

ing article about the method. However, to the best of

our knowledge, this article has never been published. In

contrast, the first two articles that explicitly mention

LBP were published one year later [81,95]. Later on, in

1996, appeared the article that it is usually considered

the origin of the method [82]. But Zabih and Woodfill

[129] had already presented a method, referred to as

census transform, which resembles the LBP to a great

extent, the only difference being the verse of the in-

equality in Eq. 8. Finally, and surprisingly enough, we

found that the fundamental idea was already detailed

in a work of Gong et al. [26], where LBP is a by-product

of a simplification of texture spectrum.

3.1.9 Simplified texture spectrum

Texture spectrum has been the basis of a good number

of variations, all aiming to reduce the rather high di-

mensionality of the method. Xu et al. [128] proposed a

simplified version which we indicate here as simplified

texture spectrum (STS). Their method is based on the

observation that, as the neighbourhood moves across

the image at steps of one pixel, a generic couple of pix-

els (c, j) switches into its symmetric, i.e.: (j, c). Conse-

quently each comparison between the central pixel and

each pixel in the periphery is performed twice. In or-

der to avoid this redundancy and reduce complexity,

the authors consider the neighbourhood formed by the

central pixel and the four adjacent peripheral pixels of

one quadrant only, specifically those corresponding to

indices j ∈ {4, · · · , 7} (see Eq. 11). This setting reduces

the number of features from 38 to 34. The kernel func-

tion can be expressed as follows:

fSTS(x) =

7∑
j=4

3(j−4)η0 (Ic − Ij) (30)

3.1.10 Simplified texture units

Madrid-Cuevas et al. [71] proposed two simplified ver-

sions of texture spectrum referred to as simplified tex-

ture units. The first one, STU+, considers the neigh-

bourhood composed of the central pixel and its vertically-

and horizontally-connected peripheral pixels (i.e.: pixels

0, 2, 4 and 6 – Eq. 11). The second one, STU×, operates

on the neighbourhood formed by the central pixel and

its diagonally-connected peripheral pixels (i.e.: pixels 1,

3, 5 and 7 – Eq. 11). In both cases dimensionality is re-

duced from 38 to 34. The corresponding kernel functions

are:

fSTU+(x) =

3∑
j=0

3jη∆ (I2j − Ic) (31)

fSTU×(x) =

3∑
j=0

3jη∆ (I2j+1 − Ic) (32)

3.1.11 Modified texture spectrum

Modified texture spectrum (MTS) can be considered as

a simplified version of LBP, where only a subset of the

peripheral pixels (i.e. pixels 4, 5, 6 and 7 – Eq. 11) is

considered. To be precise the inequality in ξ is flipped

in the original formulation of MTS [128], but this unim-

portant difference in no way alters the information that

the method conveys. The kernel function of is:

fMTS(x) =

7∑
j=4

2(j−4)ξ (Ic − Ij) (33)

3.1.12 Improved local binary patterns

Improved local binary patterns (ILBP) are based on an

idea similar to LBP, the only difference is that the whole

3×3 neighbourhood is thresholded by its average grey-

scale value [50,51]. This gives (29 − 1) possible binary

patterns (the all 0s pattern is not possible by definition,

hence the -1). The kernel function is:

fILBP(x) = 28ξ
(
Ic − S̄

)
+

7∑
j=0

2jξ
(
Ij − S̄

)
− 1 (34)
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where S̄ is the average grey-scale value over the neigh-

bourhood:

S̄ =
1

9

Ic +

7∑
j=0

Ij

 (35)

We have already mentioned, in Sec. 3.1.8, that LBP

is equivalent to the census transform, the only difference

being the sense of inequalities in Eq. 8. Same thing

occurs with ILBP, which is equivalent to the modified

census transform [23].

3.1.13 Gradient texture unit coding

Gradient texture unit coding (GTUC) [13] considers

the joint gradient computed along two vectors whose

initial point is the central pixel of the 3×3 window, and

whose terminal point is one of the peripheral pixels. To

visualize the idea, let j1 and j2 be the indices of the

terminal points of two vectors starting from the central

pixel. Now consider the following quantity:

ϕ∆(j1, j2) =


0, if |Ij1 − Ic| ≤ ∆ and |Ij2 − Ic| ≤ ∆
1, if |Ij1 − Ic| < ∆ and |Ij2 − Ic| ≥ ∆
1, if |Ij1 − Ic| ≥ ∆ and |Ij2 − Ic| < ∆

2, if |Ij1 − Ic| > ∆ and |Ij2 − Ic| > ∆

(36)

which is referred to as gradient texture feature number

(GTFN). If we pin down j1 (let, for instance, j1 = 7)

and make j2 run circularly from 0 to 7, we obtain the

GTFN corresponding to a relative angle of 45◦, 90◦,

135◦, 180◦, 225◦, 270◦, 315◦ and 0◦, respectively. The

authors correctly point out that what really counts in

this setting is the relative angle between the two vec-

tors, and that the choice of the first vector is arbitrary.

Therefore the combination of the eight angles and the

three possible values of the GTFN generates 2 · 37 pos-

sible patterns. Taking j7 as the terminal point of the

first vector, the kernel function can be formalized in

the following way:

fGTUC(x) = 37δ [ϕ∆ (I7, I7)− 2]

+

6∑
j=0

3jϕ∆ (Ij , I7)
(37)

3.1.14 3D Local Binary Patterns

3D Local Binary Patterns [46] (later on generalized to

a multi-scale version referred to as Extended Local Bi-

nary Patterns [47]) are an improvement on LBP aiming

to consider not only the sign, but also the value of the

difference between the central pixel and the peripheral

pixels. Therefore the method can be considered, to a

certain extent, a combination of LBP and GLD. In de-

vising the method, the authors moved from the consid-

eration that the signed difference between the grey-scale

value of the central pixel and that of a peripheral pixel

can be represented through nine bits: one for the sign

and the others for the absolute difference. They refer

to these bits as layers. Now suppose that layer 0 rep-

resent the sign layer and layers from 1 to 8 the bits of

the absolute difference, with the convention that layer

1 corresponds to the least significant bit. Each layer is

a string of binary digits, and can be viewed as a binary

pattern. Layer 0 is, in fact, the local binary pattern.

Layers for 1 to 8 can be interpreted as higher-order

binary patterns. The idea 3DLBP relies upon is to re-

tain the three least significant bits (i.e.: layers 1, 2 and

3) and discard the others. All the absolute differences

greater than 7 are assigned to 7. Considering that the

method generates 28 features for each layer, the result-

ing dimension is 28 · 4. For a layer l the kernel function

can be expressed as follows:

f3DLBP,l(x) =

7∑
j=0

2jβl (|Ij − Ic|) (38)

where βl(x) is a function that returns the l-th binary

digit of the decimal number x. The feature vector is

obtained through concatenation of the vectors of each

layer:

h3DLBP = hLBP||h3DLBP,1||h3DLBP,2||h3DLBP,3 (39)

3.1.15 Center-symmetric local binary patterns

Center-symmetric local binary patterns (CS-LBP) [42]

are similar to LBP, but employ a different scheme to

compare the pixel in the neighbourhood. Whereas the

central pixel plays a pivotal role in LBP, CS-LBP dis-

cards it altogether and considers the following centre-

symmetric couples of pixel values (Eq. 11): (I0, I4), (I1, I5),

(I2, I6) and (I3, I7). Robustness on flat image regions

is obtained by thresholding the gray level differences

with a parameter ∆. This generates a set of 24 possible

patterns. The kernel function can be expressed in the

following way:
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fCS-LBP(x) =

3∑
j=0

2jξ (Ij − Ij+4 −∆− 1) (40)

3.1.16 Median binary patterns

Median binary patterns (MBP) [33] have much in com-

mon with ILBP, the only difference is that MBP uses

the median of the grey-scale values of the 3× 3 neigh-

bourhood as threshold, instead of the average value.

The kernel function can be expressed as follows:

fMBP(x) = 28ξ (Ic − υ) +

7∑
j=0

2jξ (Ij − υ)− 1 (41)

where υ is the median of the grey-scale values in neigh-

bourhood.

3.1.17 Local ternary patterns

Local ternary patterns [107] can be considered a hybrid

between texture spectrum and local binary patterns.

Similarily to texture spectrum, in fact, they make use

of the ternary thresholding function to obtain ternary

binary patterns. Then each ternary pattern is split in

two binary patterns (lower and upper) through the fol-

lowing rules:

bj,LOWER =

{
1, if tj = 0

0, otherwise
(42)

bj,UPPER =

{
1, if tj = 2

0, otherwise
(43)

where tj and bj represent, respectively, the ternary and

binary value corresponding to pixel j. With this con-

vention the kernel functions that define the two dis-

tributions (local ternary patterns lower – LTPL – and

upper – LTPU) can be expressed in the following way:

fLTPL(x) =

7∑
j=0

2jξ (Ic − Ij −∆) (44)

fLTPU(x) =

7∑
j=0

2jξ (Ij − Ic −∆) (45)

The two descriptors are finally concatenated to form

the LTP model:

hLTP = hLTPU||hLTPL (46)

3.1.18 Centralized binary patterns

Centralized binary patterns (CBP) [24] consider the

same couples of centre-symmetric pixels used by CS-

LBP plus the central pixel. Relative comparison is based

on the absolute difference of grey-scale values, which is

thresholded at a predefined small positive value ∆. The

kernel function can be formalized as follows:

fCBP(x) = 24ξ
(∣∣Ic − S̄∣∣−∆)+ 3∑

j=0

2jξ (|Ij − Ij+4| −∆)

(47)

where S̄ is the average grey-scale value over the neigh-

bourhood (Eq. 35).

3.1.19 Improved center-symmetric local binary patterns

In an effort to include the value of the central pixel in

the model, a group of researchers of the Henan Poly-

techic University [126,52] proposed two variations on

CS-LBP. In order to give a compact mathematical for-

mulation of the two methods it is convenient to define,

beforehand, the following function:

φ (x1, x2, x3) =


1, if x1 ≥ x2 and x2 ≥ x3

1, if x1 < x2 and x2 < x3

0, otherwise

(48)

The first method, originally referred to as ICS-LBP

[126], and, later on, as D-LBP [52], considers the same

four couples of centre-symmetric pixels as CS-LBP (Sec.

3.1.15), but includes the value of the central pixel in the

computation. In practice the method takes into account

the four triplets corresponding to the vertical and hori-

zontal directions, and the two diagonal directions. Now

let (i, c, j) be one of such triplets: the binary value cor-

responding to it is given by φ(Ii, Ic, Ij). Consequently

the kernel function takes the following simple form:

fD-LBP(x) =

3∑
j=0

2jφ (Ij , Ic, Ij+4) (49)

The second method, denoted as ID-LBP [52], is ac-

tually very similar to the former, the only difference

being that the value of the central pixel is replaced by

the average value of the eight peripheral pixels. There-

fore we have the following kernel function:

fID-LBP(x) =

3∑
j=0

2jφ
(
Ij , Ŝ, Ij+4

)
(50)
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where Ŝ is the average grey-scale value over the eight

peripheral pixels:

Ŝ =
1

8

7∑
j=0

Ij (51)

3.1.20 Improved local ternary patterns

Improved local ternary patterns (ILTP) [75] are an ex-

tension of LTP where each pixel in the neighbourhood

is thresholded at the average grey-scale value. Similarly

to LTP the representation is split into a lower and up-

per part:

fILTPL(x) = 28ξ(S̄−Ic−∆)+

7∑
j=0

2jξ
(
S̄ − Ij −∆

)
(52)

fILTPU(x) = 28ξ(Ic−S̄−∆)+

7∑
j=0

2jξ
(
Ij − S̄ −∆

)
(53)

where S̄ is the average value of the whole 3× 3 neigh-

bourhood (Eq. 35). The two descriptors are concate-

nated to give the ILTP model:

hILTP = hILTPH||hILTPL (54)

3.1.21 Completed local binary patterns (CLBP S)

Completed Local Binary Patterns (CLBP) have been

recently introduced by Guo et al. [31] as an extension

of local binary patterns. The approach is based on dif-

ferent combinations of three basic descriptors: CLBP S,

CLBP C and CLBP M. The first (a local method) is de-

scribed here, whereas the other two (global methods)

are described in Sec. 3.2.3. As for CLBP S, this is just

an alias for LBP, which we already described in Sec.

3.1.8.

3.1.22 Local quinary patterns

In local quinary patterns (LQP) [74] the grey level dif-

ference between the central pixel and the pixels of the

periphery is encoded using five levels (i.e.: −2, −1, 0,

1 and 2) which are computed using two thresholds: ∆1

and ∆2. LQP is therefore closely related to LTP, the

only difference being that the number of encoding lev-

els is five in LQP and three in LTP. The quinary pattern

is split into four binary patterns through the following

rule:

bj,i =

{
1, if qj = i

0, otherwise
(55)

where bj,i and qj are the binary and quinary value cor-

responding to pixel j and level i; i ∈ {−2,−1, 1, 2}.
The kernel function corresponding to each level can be

written as follows:

fLQP,i(x) =

7∑
j=0

2jδ [ψ∆1,∆2 (Ic − Ij)− i] (56)

The feature vector is obtained as follows:

hLQP = hLQP,−2||hLQP,−1||hLQP,1||hLQP,2 (57)

3.1.23 Binary gradient contours

Binary gradient contours (BGC), recently introduced

by the authors in Ref. [22], are a family of descrip-

tors based on pairwise comparison of adjacent pixels

belonging to one or more closed paths traced along the

periphery of the 3× 3 neighbourhood (hence the name

contours). For each closed path a binary pattern is ob-

tained by assigning each pair of adjacent pixels (i, j)

in the path the binary value ξ(Ij − Ii). Since there are

several paths that one can pick out from the 3×3 neigh-

bourhood, different BGC operators exist. In Ref. [22] we

proposed three different operators, which are referred
to as BGC1, BGC2 and BGC3. Both BCG1 and BCG3

are based on one closed path. In the first case the the

pixels that define the path are: {0, 1, · · · , 7, 0} (Eq. 11),

therefore the corresponding couples from which the bi-

nary values are extracted are: {(0, 1), (1, 2), · · · , (7, 0)}.
In the second case the path is defined by the follow-

ing sequence of pixels: {0, 5, 2, 7, 4, 1, 6, 3, 0} (couples

are defined in the same way). Both descriptors generate

(28− 1) possible different patterns, since, as it happens

with ILBP (Sec. 3.1.12), the all-0s pattern is, by defini-

tion, impossible. In contrast BGC2 employs two closed

paths, which are: {1, 7, 5, 3, 1} and {0, 6, 4, 2, 0}. In this

case each path generates (24 − 1) possible patterns,

therefore the combination of the two gives (24 − 1)2 =

225 possible patterns. The kernel functions of the three

models are reported here below:

fBGC1(x) =

7∑
j=0

2jξ
(
Ij − I(j+1) mod 8

)
− 1 (58)
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fBGC2(x) = (24 − 1)

3∑
j=0

2jξ(I2j − I2(j+1) mod 8)

+

3∑
j=0

2jξ(I2j+1 − I(2j+3) mod 8)− 24

(59)

fBGC3(x) =

7∑
j=0

2jξ(I3j mod 8 − I3(j+1) mod 8)− 1 (60)

3.1.24 Center-symmetric texture spectrum

Center-symmetric texture spectrum (CS-TS∆) [130] can

be viewed as a variation of texture spectrum (Sec. 3.1.4)

in which the scheme to compare the pixels in the neigh-

bourhood is the same as in CS-LBP (Sec. 3.1.15). It is

worth mentioning that in the original reference [130] the

method is indicated as center-symmetric local ternary

patterns (CS-LTP). This is, however, quite a misleading

name, since the mathematical formulation can be eas-

ily derived from TS∆, but not from LTP (Sec. 3.1.17).

To avoid this potential source of confusion, herein the

method is referred to as center-symmetric texture spec-

trum. The kernel function is:

fCS-TS∆(x) =

3∑
j=0

3jη∆ (Ij − Ij+4) (61)

3.1.25 Improved center-symmetric texture spectrum

The improved center-symmetric texture spectrum (ICS-

TS∆) [130] is obtained by splitting CS-TS∆ in two

parts: CS-TS1∆ and CS-TS2∆. The former considers

the couples (I0, I4) and (I2, I6), the latter the couples

(I1, I5) and (I3, I7). Therefore the two kernel functions

are:

fICS-TS1∆(x) =

1∑
j=0

3jη∆ (I2j − I2j+4) (62)

fICS-TS2∆(x) =

1∑
j=0

3jη∆ (I2j+1 − I2j+5) (63)

The feature vector is obtained through concatena-

tion of the feature vectors of CS-TS1∆ and CS-TS2∆:

hICS-TS∆ = hICS-TS1∆||hICS-TS2∆ (64)

3.1.26 Gradient-based local binary patterns

Another LBP-related method is represented by gradient-

based local binary patterns (GLBP) [41]. Here the ab-

solute difference between the central pixel and each pe-

ripheral pixel is thresholded at the mean absolute dif-

ference between (I0, I4) and (I2, I6). In formulas:

fGLBP(x) =

7∑
j=0

2jξ (I+ − |Ij − Ic|) (65)

where:

I+ =
1

2
(|I0 − I4|+ |I2 − I6|) (66)

3.1.27 Improved binary gradient contours

We propose in this section an extension of BGC1, al-

ready described in (Sec. 3.1.23). This improved version

includes the central pixel and can be easily derived from

the original formulation (Eq. 58) by comparing the cen-

tral pixel value with the average grey-scale value. The

kernel function is:

fIBGC1(x) = (28−1)ξ
(
Ic − S̄

)
+

7∑
j=0

2jξ
(
Ii − I(j+1) mod 8

)
−1

(67)

where S̄ is the average grey-scale value over the neigh-

bourhood (Eq. 35). We refer to this method as improved

binary gradient contours (IBGC1).

3.2 Global methods

3.2.1 Binary texture co-occurrence spectrum

The binary texture co-occurrence spectrum [90] is based

on the probability of occurrence of the binary states

that a neighbourhood of predefined shape and size (n-

tuple) can take once the image is binarized through

a global threshold. The implementation adopted here

considers the neighbourhood formed by pixels 0, 2, 4

and 6 (Eq. 11). We refer to this method as BTCS+.

The kernel function can be expressed as follows:

fBTCS+(x) =

3∑
j=0

2jξ
(
I2j − Î

)
(68)

where Î is the binarization threshold. In our implemen-

tation Î is the value that divides the grey-scale his-

togram of the whole image in two parts of equal entropy

[4].
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3.2.2 Coordinated clusters representation

The Coordinated clusters representation (CCR) was

originally developed as a texture descriptor for binary

images [61]. It was later on extended to grey-scale im-

ages through a preliminary thresholding step [99], and,

recently, to colour images too [5].

The method is based on the same idea of BTCS, i.e.

estimating the probability of occurrence of the 29 pos-

sible binary instances of a 3× 3 window. In some sense

it is also similar to LBP and ILBP, the main difference

being that threshold is global in this case. The kernel

function is:

fCCR(x) = 28ξ
(
Ic − Î

)
+

7∑
j=0

2jξ
(
Ij − Î

)
(69)

where the meaning of Î is the same as in Eq. 68.

It is interesting to mention that this descriptor has

been proposed, apparently independently, by various

authors. Chronologically the method should be ascribed

to Kurmyshev and Cervantes, who first described it in

1996 [61]. Later the same idea appears in the work of

Lindsey and Strömberg [69], where 3 × 3 binary pat-

terns are referred to as ‘p-grams’. Finally, Kirsanova

and Sadovsky [56] described a conceptually equivalent

method where binary patterns are referred to as ‘smalts’.

3.2.3 Completed Local Binary Patterns (CLBP C and

CLBP M)

CLBP C thresholds the central pixel at the average grey

value of the whole image, and therefore generates only

two binary patterns. The kernel function is:

fCLBP C(x) = ξ
(
Ic − Ī

)
(70)

where

Ī =

M∑
m=1

N∑
n=1

Im,n

MN
(71)

CLBP M considers the possible binary patterns that

are defined by the absolute difference between the gray

value of a pixel in the periphery and that of the cen-

tral pixel when thresholded with a global parameter. In

formulas:

fCLBP M(x) =

7∑
j=0

2jξ
(
|Ij − Ic| − Ĩ

)
(72)

where Ĩ is the average value of the difference in grey

value between a pixel in the periphery and the central

pixel:

Ĩ =

M−1∑
m=2

N−1∑
n=2

1∑
i=−1

1∑
j=−1

|Im−i,n−j − Im,n|

8(M − 2)(N − 2)
(73)

3.3 Methods not included in the experiments

Among the methods appeared in literature, there are

some that – though belonging in principle to the HEP –

could not be included in the experiments due to insuffi-

cient description or lack of implementation details. For

the sake of completeness, we briefly summarize these

methods here below, stating the reasons why we could

not include them in the experiments.

The fast coordinated clusters representation (FCCR)

[62] is a simplified version of the CCR (Sec. 3.2.2) ob-

tained through row- or column-wise marginalization of

the 3 × 3 neighbourhood. This approach produces 23

binary patterns for each row (or column), but the au-

thors do not specify how to combine the histograms

corresponding to each row/column.

In Ref. [119] it is described an approach similar to

ILBP (Sec. 3.1.12), but with a different procedure to

compute the local threshold. The method, referred to as

local adaptive Niblack algorithm, computes the thresh-

old as a function of the ratio between the mean value

and standard deviation of the grey values in the neigh-
bourhood. The paper does not specify, however, how to

treat patterns which have null standard deviation (e.g.:

flat areas).

Two variations of a descriptor referred to as fuzzy

texture spectrum have been proposed in Refs. [121–

123]. Both methods look like extensions of texture spec-

trum (TS∆, Sec. 3.1.4) to five and seven quantization

levels, respectively. The problem here is that the kernel

functions (Eqs. 1 and 2 of Ref. [121]) appear to make use

of fractional exponents, which result in irrational num-

bers. This prevents the method from being inserted in

the HEP.

Wu and Sun [125] presented a method based on the

joint distribution of the vertical, horizontal and the two

diagonal binary triplets obtained by thresholding the

corresponding grey-scale values at the average value of

the neighbourhood. The mathematical formulation of

the method, however – Eq. 3 of Ref. [125] –, is com-

pletely unclear and does not match the number of fea-

tures (105) that the method is supposed to generate.
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Finally, the grey level weight matrix (GLWM) [98],

based on the ternary thresholding function, is very sim-

ilar to texture spectrum (TS0, Sec. 3.1.4). The matter

with GLWM is that the number of binary patterns that

it generates (38) does not match the coding scheme de-

scribed in [98], which can enumerate only 28 patterns.

4 Extensions

4.1 Robustness against rotation

The most common procedure to obtain rotationally-

invariant descriptors – which in the case of a 3 × 3

neighbourhood means invariance to discrete rotations

of 45◦ – is based on two steps [85,21]: 1) conversion of

the square neighbourhood into a circular one through

interpolation, and 2) rotationally-invariant normaliza-

tion of the feature vector. In the first step the original

window (let us assume, as usual, this be a 3×3 window)

is replaced by a circular one. Such a neighbourhood is

usually indicated as (8, 1), where the first number repre-

sents the number of pixels in the periphery and the sec-

ond the radius (in pixels) of the circle. Grey-scale values

of points that do not lie exactly on pixels centres are

estimated through bilinear interpolation. In the second

step the feature vector is processed to obtain another

vector which is invariant against discrete rotations of

the input image. To this end two solutions have been

proposed: the use of rotationally-invariant patterns and

DFT normalization. The first approach groups together

the class labels that are equivalent under a circular shift

of the index j (see Eq. 11); the second one exploits the

property that the DFT of a vector is invariant to any

circular shift applied to that vector. For details and

technicalities about these two approaches readers are

referred to the work of [21]. We recall that the effect of

both is dimensionality reduction: in the case of LBP, for

instance, the number of features reduces from 28 to 36

and 163, when rotationally-invariant patterns or DFT

normalization is used.

4.2 Multi-scale analysis

Multi-scale analysis can be theoretically achieved us-

ing neighbourhoods wider than the 3× 3, for instance:

5 × 5, 7 × 7, etc. This approach, however, is imprac-

tical, due to the very high-dimensional feature vectors

that arise. The usual strategy consists in dividing the

neighbourhood into concentric sub-neighbourhoods –

though other sampling schemes are also possible [105]

– and concatenating the feature vectors of each sub-

neighbourhood [85]. Statistically this is a marginaliza-

tion procedure, which is theoretically correct only under

the assumption of independence between the various

sub-neighbourhoods. Though this assumption does not

hold in general, marginalization has been successfully

employed to deal with multi-scale analysis [85]. Multi-

scale approaches have been described for GLCM [9,19],

LBP [85], and rank-based descriptors [93].

An alternative approach to multi-scale analysis, which

is currently quite common, consists in decreasing the

image resolution while maintaining the scanning win-

dow as small as 3 × 3. This strategy gives rise to the

so-called pyramidal methods. Sun et al. [106], for in-

stance, applied CS-LBP to a sequence of increasingly

finer spatial grids computed from the original images.

Likewise, in the approach proposed by Qian et al. [96],

a pyramidal descriptor (PLBP) is constructed by cas-

cading the LBP information over a hierarchical spatial

pyramid.

4.3 Dimensionality reduction

The feature vector returned by Eq. 2 can be either used

as is (this is the approach used in our experiments)

or submitted to a post-processing step to further re-

duce dimensionality. In Sec. 4.1 we have mentioned that

some methods to obtain rotationally-invariant descrip-

tors produce, as a side-effect, a reduction in the number

of features. In other cases dimensionality reduction can

be the sole objective of post-processing. This is very

common with methods that return long feature vectors,

such as GLCM. In this case the typical treatment con-

sists in extracting global statistical descriptors such as

contrast, energy, entropy, correlation, homogeneity, etc.
[34,94]. Alternative approaches also exist, such as his-

togram binarization, which results in a method known

as binary co-occurrence matrix (BCM) [59,60]. Post-

processing is not limited to GLCM, and has been ap-

plied to other methods too, such as texture spectrum

[118,39,15] and Local Binary Patterns [68,76].

4.4 Discussion

We conclude this section with some considerations about

the possible extensions of the framework. In particular

we would like to explain the reasons why we did not

considered the extensions in the experiments.

The first reason is that extensions have not been

published for all the methods considered in Sec. 3: rotation-

invariant and multi-scale variations exist for some meth-

ods (e.g.: LBP, ILBP, CCR, etc.), but not for all. Some

of the methods considered herein cannot, in fact, be

extended to a rotationally-invariant version: consider,
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for instance, those that employ only one quadrant of

the 3 × 3 window (e.g.: STS, MTS). Other methods,

such as STU+ and STU×, could be theoretically made

rotationally-invariant, but they would actually be in-

variant to discrete rotations of 90◦ only.

The second reason is that the use of linear inter-

polation as a preliminary step to obtain rotationally-

invariant descriptors introduces a significant distortion

in the space partitioning scheme associated with each

method, as set into evidence in Ref. [7]. This distortion

is likely to significantly degrade – or at least to alter –

the performance of the methods, which is exactly what

one seeks to avoid when making comparisons.

Finally, as for post-processing, the problem is that

no general approaches exist, but only ad hoc solutions

tailored to specific descriptors (e.g.: GLCM).

5 Theoretical considerations

In this section we wish to elaborate on two key issues

related to texture analysis through ‘bag-of-features’, a

concept introduced in Sec. 2.1. Any method of this type

has in fact to answer the following two fundamental

questions: 1) whether features should be computed a

priori (i.e.: independently of any training sample) or a

posteriori (i.e.: based on a set of training samples); and

2) whether features should come from filter responses

or from image patches directly.

5.1 A priori vs. a posteriori

In the preceding sections we have shown that any method

belonging to the HEP is based on a space partitioning

function which is defined a priori, without the need of

any training sample. An alternative strategy, proposed

and sustained by various authors, consists in defining

partitioning criteria that rely upon a set of represen-

tative patterns. In this case the partition is computed

a posteriori. The definition of the representative pat-

terns is usually referred to as codebook generation [53].

Codebooks are typically created from a set of training

images using some standard clustering algorithm such

as: k-means [114,115], self-organizing maps [80,113] or

vector quantization [83,84]. This procedure generates a

class of texture descriptors which Guo et al. [32] have

referred to as training-based (TBM henceforth) meth-

ods, to contrast them with dataset-independent meth-

ods [16], which do not require training images.

These methods can be formally expressed through

the same notation adopted in Sec. 2.2. The k-th element

of the generic feature vector in the following way:

hk =
1

D

mmax∑
m=mmin

nmax∑
n=nmin

δ

{
arg min
0≤z≤K−1

||xΩm,n −Cz|| − k
}

(74)

where Cz represents an entry of the predefined code-

book C:

C = {Cz ∈M3×3,G | 0 ≤ z ≤ K − 1} (75)

The a priori/a posteriori dichotomy reflects the an-

cient philosophical debate as to whether knowledge is

attained apart from experience or derives from it. In

texture analysis our opinion is that a priori approaches

are generally simpler, since they do not require code-

book generation. As for a posteriori approaches, these

can be very dependent on the training data, with poten-

tially negative consequence on classification (e.g.: over-

fitting). Moreover, care should be taken in choosing the

appropriate clustering approach to generate codebooks:

the use of non-deterministic procedures (e.g.: k-means)

may lead to non-repeatable and therefore unpredictable

results.

5.2 Image patches vs. filter responses

The second dichotomy deals with the kind of data that

descriptors take as input. These can be either filter re-

sponses or image patches. Filter responses have been

employed since the dawn of texture analysis. Their use

has been justified in various ways. Unser [111] affirmed

that, theoretically, any transform of the original image

patches satisfying some optimality criteria should al-

ways improve the efficiency, when compared with the

original representation. Griffin and Lillholm [29] estab-

lished a relationship between the quantitative descrip-

tion provided by a family of linear filters and the qual-

itative description of local image structure. Further-

more, certain classes of filters (e.g. Gabor filters) are

considered to be closely related to the human vision

system [17].

Other authors, however, have set into evidence that

texture classification can also be approached, simply

and effectively, by employing image patch exemplars

with a support as small as 3 × 3, without the use of

large filter banks [114]. In a recent work Ghita et al.

[25] have shown that the performances in texture clas-

sification offered by LBP/C and multi-channel Gabor

filtering are comparable.

In principle there are advantages to both strategies,

and, to the best of our knowledge, none of the two

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16

has been definitely proven superior. The use of image

patches certainly reduces the computational overhead

and frees the user from having to design complex filter

banks that are likely to be application-dependent [70].

Conversely, methods based on filtering tend to be more

robust to noise, since the change in the value of a sin-

gle pixel – which can dramatically affect patch-based

descriptors [132] – has less effect in this case. More-

over, specific filters such as Local Phase Quantization

[87,43] can be used to implement blur-invariant texture

descriptors.

6 Experiments

To compare the performance of the texture descriptors

presented in Sec. 3 we submitted them to an exten-

sive texture classification experiment. In the following

subsections we describe the datasets considered in the

experiments and the methodology through which the

performance of the methods has been assessed.

6.1 Datasets

Eleven image datasets have been considered in this ex-

periment. The main characteristics of each dataset are

described in detail in the following subsections and sum-

marized in Tab. 2.

6.1.1 Bonn BTF

The BTF Database Bonn [8,36], maintained at the In-

stitute of Computer Science II of the University of Bonn

(Germany), is a part of a project aiming to develop

novel techniques for the efficient and high-fidelity cap-

ture of materials’ appearance. The image acquisition

process is based on an impressive multi-camera appara-

tus consisting of 151 digital consumer cameras mounted

on a dome-shaped rack. This enables simultaneous ac-

quisition under varying viewing and illumination an-

gle. The dataset considered here (Fig. 1) is obtained by

merging two different datasets which are part of BTF

Database Bonn: ‘ATRIUM’ and ‘UBO2003’. The for-

mer contains four texture classes of floors and cover-

ings: ceiling, walkway, floortile and pinktile; the latter

six classes of general materials: corduroy, granite, up-

holstery, polyacryl, wallpaper and wool. In both cases

the images considered herein are those taken at orthog-

onal viewing and illumination angle. The ATRIUM im-

ages have been cropped to 256 × 256 first, and then

subdivided into 16 non-overlapping sub-images. The

UBO2003 images, whose original resolution is 800 ×

800, have been subdivided into 16 non-overlapping sub-

images. Though this dataset includes images of different

resolution, this does not affect the experiments, since all

the texture descriptors provide normalized histograms

(see Eq. 2).

Fig. 1: The 10 classes of the Bonn BTF dataset.

6.1.2 Brodatz

Brodatz is one of the first datasets that have been

used in texture analysis. It includes textures of nat-

ural scenes and materials (i.e.: grass, bark, sand and

straw) as well as artificial manufactured goods (i.e.:

raffia, pigskin and bricks). Despite it is quite old, it is

largely used still today. It is important to point out that

the original source images [10] are not in digital format.

Various digital repositories exist, though they are not

exactly equivalent. When using this dataset it is there-

fore recommendable to specify the exact source. The

images used here have been downloaded from a repos-

itory [112] maintained by the University of Southern

California. The dataset (Fig. 2) includes the following

classes (one image per class): D9, D12, D15 D16, D19,

D24, D29, D38, D68, D84, D92, D94 and D112. In or-

der to obtain more samples for each class, the original

images, the resolution of which is 1024 × 1024, have

been subdivided into 16 non-overlapping sub-images of

resolution 256× 256.

Fig. 2: The 13 classes of the Brodatz dataset.

6.1.3 Jerry Wu

This database has been developed within the Texture-

Lab at the Heriot-Watt University (UK). The name
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Table 2: Summary of the datasets considered in the experiments.

Name Number Classes Samples Total Sample Image Predefined
per class samples resolution (pixels) format train/test sets?

Bonn BTF 1 10 16 160 200× 200 and 64× 64 Colour (JPEG) No
Brodatz 2 13 16 208 256× 256 Monochrome (TIFF) No
Jerry Wu 3 39 4 156 256× 256 Colour (BMP) No
KTH-TIPS 4 10 4 40 100× 100 Monochrome (PNG) No
KTH-TIPS2b 5 11 16 176 100× 100 Colour (PNG) No
MondialMarmi 6 12 64 768 136× 136 Colour (BMP) No
OuTeX TC 00000 7 24 20 480 128× 128 Monochrome (RAS) Yes
OuTeX TC 00001 8 24 88 2112 64× 64 Monochrome (RAS) Yes
OuTeX TC 00013 9 68 20 1360 128× 128 Colour (BMP) No
UIUCTex 10 25 40 1000 640× 480 Monochrome (JPEG) No
VisTex 11 167 16 2672 128× 128 Colour (BMP) No

comes from Jerry Wu, the researcher who built it as a

part of his PhD [124]. The dataset includes 39 texture

classes acquired under different combinations of illumi-

nation direction, imaging direction and surface rotation

[49]. They include natural and artificial materials such

as wood, wallpaper, fabric and grains. The original im-

ages are grey-scale with a resolution of 512× 512. The

subset used in our experiments (Fig. 3) contains the im-

ages captured under slant angle 0◦, tilt angle 45◦ and

surface orientation 0◦. Each original image has been

subdivided into four non-overlapping sub-images.

Fig. 3: The 39 classes of the Jerry Wu dataset.

6.1.4 KTH-TIPS

The KTH-TIPS database [57] was designed within the

Computer Vision and Active Perception Lab of the

KTH Royal Institute of Technology (Sweden) as a tool

to investigate the effect of real-world imaging conditions

on material classification [37]. The dataset includes 10

classes of common materials: aluminium foil, bread, cor-

duroy, cotton, cracker, linen, orange peel, sandpaper,

sponge and styrofoam. Images are taken under nine

equally-spaced scales over two octaves, three rotation

angles and three lighting directions, giving 81 images for

each class. The subset considered here includes the im-

ages acquired at scale 5 (the central scale, correspond-

ing to an object/camera distance of 28.0 cm), illumi-

nation and pose angle 0◦. The resolution is 200 × 200.

A further division into four 100 × 100 sub-images has

been performed to get more samples per class.

Fig. 4: The 10 classes of the KTH-TIPS dataset.

6.1.5 KTH-TIPS2b

The KTH-TIPS2b database [11] is an extension of KTH-

TIPS. The acquisition process largely follows the pro-

cedure used for KTH-TIPS, with some differences re-

garding scale and illuminant. KTH-TIPS2b presents 11

classes of materials with 16 samples per class (Fig. 5).

The subset used here maintains the same settings (i.e.:

object/camera distance, illumination and pose angle

used for KTH-TIPS – see Sec. 6.1.4).

6.1.6 MondialMarmi

MondialMarmi is a database of images of granite tiles

(Fig. 6) for colour and texture analysis. The current

version (1.1) features 12 granite classes: Acquamarina,

Azul Capixaba, Azul Platino, Bianco Cristal, Bianco

Sardo, Giallo Napoletano, Giallo Ornamentale, Giallo

Santa Cecilia, Giallo Veneziano, Rosa Beta, Rosa Porriño

A, Rosa Porriño B. There are four images for each

class. The images, available as colour .bmp (resolution:
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Fig. 5: The 11 classes of the KTH-TIPS2b dataset.

544 × 544), have been acquired under controlled illu-

mination conditions using a dome illuminator and a

consumer digital camera. The acquisition procedure is

described in detail in Ref. [21]. Scale and illumination

are invariable, but the dataset includes hardware- and

software-rotated images. The dataset can be accessed

freely at the URL indicated in Ref. [72].

Fig. 6: The 12 classes of the MondialMarmi dataset.

6.1.7 OuTeX TC 00000 and OuTeX TC 00001

Outex is a well-known general framework for evaluat-

ing texture classification and segmentation algorithms

[86,88]. The image dataset contains a wide variety of

surface textures acquired under controlled and variable

conditions of illumination, rotation and spatial resolu-

tion. The framework also provides pre-defined classifi-

cation and segmentation problems (test suites). OuTeX

TC 00000 and OuTeX TC 00001 present the same 24

texture classes (Fig. 7), but the number of samples for

each class is different (20 and 88, respectively). The

image resolution is: 128 × 128 for OuTeX TC 00000

and 64 × 64 for OuTeX TC 00001. In both datasets

the imaging conditions (i.e.: type of illuminant, rota-

tion and scale) are invariable.

6.1.8 OuTeX TC 00013

The OuTeX TC 00013 test suite (Fig. 8) contains 68

colour texture images acquired under invariable illumi-

nation, rotation and scale. Image resolution is 128 ×
128 pixels. To obtain more samples for each class the

Fig. 7: The 24 classes of the OuTeX TC 00000 and Ou-

TeX TC 00001 test suites.

original images have been subdivided into four non-

overlapping sub-images.

Fig. 8: The 68 classes of the OuTeX TC 00013 test

suite.

6.1.9 UIUCTex

The UIUCTex texture database [64] (Fig. 9), developed

and maintained by the Ponce Group at the Univer-

sity of Illinois at Urbana-Champaign, features 25 tex-

ture classes of natural and artificial materials such as

bark, wood, glass, marble, fabric, etc. For each class

the dataset contains 40 samples acquired under vari-

able – but uncontrolled – imaging conditions. The im-

ages are grey-scale with a resolution of 640×480 pixels

and can be downloaded at the URL reported in Ref.

[109]. This dataset is particularly challenging since it

includes affine transforms, viewpoint and illumination

changes and non-rigid deformations.

6.1.10 VisTex

The Vision Texture database (VisTex) is a collection of

texture images developed at the Massachusetts Insti-

tute of Technology (USA). Since Dec. 2002 the database

is no longer maintained, but only available ‘as is’ [117].
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Fig. 9: The 25 classes of the UIUCTex dataset.

The dataset (Fig. 10) contains 167 texture classes – one

image per class – representing quite heterogeneous ma-

terials and scenes, such as grass, water, brick, buildings,

clouds, sand, etc. The images have been acquired under

uncontrolled illumination and viewing conditions [102].

Each image, whose original resolution is 512× 512, has

been subdivided into 16 non-overlapping sub-images.

Fig. 10: The 167 classes of the VisTex dataset.

6.2 Comparative assessment of performance

A comparative analysis of the texture descriptors pre-

sented in Sec. 3 and summarized in Tab. 1 has been car-

ried out through a supervised image classification task.

Assessing the relative performance of texture descrip-

tors is not straightforward in this case, since the meth-

ods are evaluated over several datasets. A mere compar-

ison of the average classification accuracy would make

little sense here, due the diversity of the datasets, and

would possibly lead to inconclusive results. We there-

fore adopted a procedure in three steps: 1) estimation

of the accuracy of each descriptor for each dataset; 2)

pairwise comparison and 3) ranking.

In the first step the images of each dataset are pre-

liminarily divided into two disjoint sub-sets, one for

training and the other for validation, with the con-

straint that one half of the samples of each class is used

for training and the other half for validation. The im-

ages of the validation set are then classified through the

nearest-neighbour rule (1-NN) with L1 distance. The

estimated accuracy is the percentage of images of the

validation set which are classified correctly. The proce-

dure is repeated 100 times, each time with a different

subdivision into training and validation set, and the ac-

curacy obtained with each subdivision is recorded. The

same 100 subdivisions into training and validation set

are used for all the texture descriptors. As for OuTeX

TC 00000 and OuTeX TC 00001, we maintained the

same subdivisions the two test suites come with.

The second step deals with the relative comparison

of pairs of methods within each dataset. Let a1 and

a2 be the accuracy vectors (100 elements each) of the

two descriptors that are under comparison. To check

whether there is significant difference between the two

methods we used the Wilcoxon signed-rank test [73]

with α = 0.05. The positiveness of this non-parametric

test rejects the hypothesis that the components of the

vector (a1−a2) are randomly drawn from a symmetric,

continuous and null-median distribution. Therefore if

the test detects significant difference we consider that

one of the two methods outperforms (or underperforms)

the other.

In the third step we construct a ranking based on

the following rule: for each pairwise comparison, if one

of the two methods outperforms the other, assign a +1

to the winner. Finally the points that a method obtains

in each dataset are summed up to provide the overall

ranking.

We conclude this section with some considerations

in support of the use of the nearest-neighbour classifier.

As it has been set into evidence in a recent work [6],

this classification strategy is particularly suitable for

feature comparison purposes due to the absence of tun-

ing parameters, easiness of implementation and other

desirable asymptotic properties. A review of recent re-

lated literature indeed shows that 1-NN is most com-

monly adopted in evaluating the relative performance

of texture analysis algorithms [115,16,31,54,70].

More sophisticated methods may provide better ab-

solute results, but at the cost of complicated tuning

procedures. For comparative purposes we repeated the

experiments using SVM, a classifier which is usually
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Table 3: Average classification accuracy.

Texture descriptor Dataset
1 2 3 4 5 6 7 8 9 10 11

3DLBP 88.42 99.21 95.19 99.75 88.99 85.53 96.38 97.25 76.71 58.90 73.34
BGC1 96.66 100.00 97.59 100.00 90.33 82.67 99.90 98.54 79.09 58.66 76.19
BGC2 96.45 99.39 97.09 100.00 82.82 75.41 99.13 96.68 76.81 52.37 69.87
BGC3 96.91 99.80 98.21 99.10 84.64 76.93 98.83 96.32 75.93 52.47 68.51
BTCS+ 93.11 96.23 84.58 98.55 78.06 72.01 89.65 84.05 63.21 41.21 41.16
CBP 97.64 99.19 91.04 99.05 87.27 84.28 97.26 95.09 72.43 57.99 61.87
CCR 92.45 98.76 93.71 100.00 84.43 80.88 96.30 91.91 70.73 53.07 53.37
CLBP M 84.58 98.95 95.06 100.00 76.95 82.30 98.43 96.45 71.72 54.48 65.21
CLBP C × CLBP M 87.63 99.88 97.37 99.55 87.60 87.39 99.10 98.74 78.12 68.82 67.45
CLBP S || (CLBP M × CLBP C) 92.89 100.00 98.71 100.00 94.07 92.35 99.84 99.51 81.94 73.58 75.85
CLBP M × CLBP S 59.51 100.00 99.59 99.60 91.84 73.53 99.88 96.89 76.93 76.51 75.65
CLBP C × CLBP M × CLBP S 68.44 100.00 99.60 98.25 91.03 76.74 99.94 97.07 78.47 82.29 74.68
CS-LBP 92.63 99.01 91.71 100.00 81.16 75.09 92.95 86.77 64.88 44.39 54.26
CS-TS∆ 97.55 99.67 95.42 100.00 88.78 84.08 98.05 95.95 73.64 57.02 65.95
D-LBP 99.58 99.93 92.94 97.30 82.65 78.29 97.02 90.81 73.09 45.47 66.15
GLBP 83.01 99.86 95.32 99.40 80.50 74.44 97.27 92.80 71.15 45.46 68.40
GLCM 99.55 96.98 68.92 92.55 83.94 88.69 38.49 43.62 79.88 45.98 77.41
GLD 80.40 79.99 59.01 84.15 75.26 60.60 56.52 65.57 45.47 37.33 54.91
GLTCS+ 95.47 97.98 93.10 96.70 72.24 66.88 97.22 90.97 71.59 44.23 58.34
GTUC 94.79 98.81 92.22 98.75 86.83 82.57 97.99 96.51 71.79 54.20 65.81
IBGC1 95.90 100.00 98.27 100.00 93.10 85.34 99.95 99.23 80.19 61.16 77.88
ICS-TS∆ 94.81 97.03 90.82 93.80 84.73 77.92 95.53 91.91 67.46 44.10 50.71
ID-LBP 97.59 97.18 88.51 99.65 75.45 73.25 95.90 88.50 68.85 37.33 57.71
ILBP 95.76 100.00 98.64 100.00 92.08 86.63 99.61 99.36 80.31 61.62 75.41
ILTP 99.17 100.00 98.85 100.00 93.93 91.19 99.87 99.58 80.88 66.84 77.89
LBP 95.86 100.00 97.26 100.00 89.68 83.42 99.68 98.43 78.18 57.25 74.20
LQP 98.17 99.99 98.27 100.00 93.17 87.82 99.13 98.92 79.36 66.31 76.42
LTP 99.00 100.00 98.45 100.00 93.80 88.84 99.75 99.22 80.05 63.96 76.46
MBP 98.61 99.97 96.65 100.00 88.91 85.46 99.35 97.67 77.73 58.54 74.29
MTS 92.08 97.48 91.71 91.30 75.30 69.24 97.52 91.35 69.88 44.30 56.64
RT 94.26 99.97 91.13 100.00 77.10 67.06 94.25 84.36 69.17 57.05 54.11
RTU 97.45 99.79 94.40 97.65 82.27 74.58 94.72 89.59 72.77 62.99 64.77
SDH 99.56 98.04 72.65 94.00 87.33 91.32 58.86 67.03 83.21 69.35 71.11
STS 93.30 99.33 94.82 99.15 82.33 74.07 98.29 95.49 74.53 49.26 66.34
STU+ 99.81 99.97 97.06 100.00 91.93 87.27 98.87 98.32 77.47 62.11 73.35
STU× 98.35 99.99 98.73 100.00 92.20 89.86 99.02 98.81 79.70 65.82 72.94
TS0 96.58 100.00 97.71 100.00 89.80 85.22 99.48 97.79 79.32 63.02 76.49
TS∆ 95.16 100.00 98.95 100.00 93.82 89.66 99.66 98.94 80.39 68.66 78.78

BIF-M 88.63 99.85 97.53 98.25 75.31 60.62 97.88 91.75 69.35 94.39 55.78
BIF-W (L2) 94.91 98.33 93.41 93.55 67.16 51.09 95.70 84.87 59.83 85.93 45.41

considered superior to the 1-NN. The problem is that

the accuracy of an SVM model is largely dependent on

the selection of the model’s parameters, particularly C

and γ [14]. As for texture classification problems, dif-

ferent values of C and γ have indeed been reported in

literature. Li et al. [67] proposed the following pairs

of values: (C = 1000, γ = 50), (C = 1000, γ = 0.5)

and (C = 1000, γ = 0.02); Kim et al. [55] adopted

(C = 100, γ = 2), and Rajpoot and Rajpoot [97]

(C = 1, γ = 0.001). Our experiments conducted with

SVM using radial-basis kernel and these five couples of

values showed that classification accuracy is very sen-

sitive to these parameters, and that performance drops

drastically when the SVM model is not tuned properly.

To give an example consider that the accuracy of ILTP

(best performer) on the KTH-TIPS2b dataset drops

from 93.50% to 56.44%, while the accuracy of LTP

(second-best performer) drops from 90.34% to 54.19%

when SVM parameters switch from (C = 1000, γ = 50)

to (C = 1, γ = 0.001). The SVM classification re-

sults about the first 10 methods of the ranking can be

accessed here [44]. We notice that not only the accu-

racy changes significantly, but that the relative ranking

changes as well. These findings strongly support, in our

opinion, the use of a parameter-free classifier like the

1-NN for comparative purposes.

6.3 Methods that depend on parameters

Some of the methods considered in the experiments de-

pend on one or two parameters which are used to feed

the ternary (Eq. 9) or quinary (Eq. 10) thresholding

functions. In the text these parameters are indicated as

∆, ∆1 and ∆2, respectively. Since the values of these

user-specified thresholds have significant effects on the

performance, particular attention should be taken in

evaluating these methods. The problem is that no gen-

eral criterion to estimate optimal values for these pa-

rameters has been proposed so far. The values available

in literature are indeed quite different. Madrid-Cuevas

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



21

et al. [71] report optimal results for TS∆, STU+ and

STU× with ∆ = 16, 8 and 32, respectively, on an image

classification task based on the Brodatz album. Tan and

Triggs [107] suggested using ∆ = 5 for face recognition

based on LTP. Chang and Chen [13] used ∆ = 3 for

a texture classification experiment based on TS∆ and

GTUC. Finally, some authors [40,24] do not specify the

value of ∆ at all, but simply refer to it as a “small pos-

itive value”. Even more complicated is the case when

two parameters are involved, as in local quinary pat-

terns. In the implementation presented in Ref. [74] the

authors proposed ∆1 = 2 and ∆2 = 5.

The procedure adopted herein is based on an ex-

haustive search over a predefined set of parameter val-

ues. As a first step we established a predefined set of

values for the parameters: ∆ ∈ [1, 32], ∆1 ∈ [1, 3] and

∆2 ∈ [4, 6]. Then we estimated the accuracy of each

method with each dataset for each value (or couple of

values) of the parameters with the procedure described

in the preceding section. Finally, for each descriptor and

dataset we picked out best results, which are those re-

ported in Tab. 3. The parameters that yield the best

accuracy are reported in Tab. 4 (in some cases the pa-

rameters that give optimal results are not unique).

6.4 Implementation, execution and reproducible

research

The texture descriptors have been implemented in Mat-

lab R© R2008b. The classification experiments have been

performed in the School of Industrial Engineering, at

the University of Vigo, on a PC equipped with Intel R©

core
TM

Quad CPU Q8200, 4GB RAM, and Windows
TM

7 – 64 bits, Service Pack 1. The execution of the scripts

required more than 350 hours of computing time. For

reproducible research purposes, all the data required to

replicate the experiments (i.e.: source code, images and

subdivisions into train and validation sets) are available

in Ref. [44]1.

6.5 Results

The experimental results are summarized in Tab. 3 and

Fig. 11. The former reports the average accuracy (i.e.:

over the 100 problems) of each method and for each tex-

ture dataset. These results give an idea of the overall

performance of the descriptors in the various datasets.

For comparative purposes, however, it is recommend-

able to consider the final ranking, as explained in Sec.

6.2. This is reported in the form of a scatter plot (Fig.

1 To access the page: user = texture, psw = analysis

11) in which the x-axis represents the dimension of the

feature vector (in log2 scale) and the y-axis the nor-

malized number of victories obtained by each method

(see Sec. 6.2 for details). The tournament shows that

ILTP and CLBP S || (CLBP M × CLBP C) are the

best among the parametric and non-parametric meth-

ods, respectively. The results also show the following

patterns:

– Multilevel discretization is more effective than pure

binarization. Seven out of the first ten positions

of the ranking are indeed occupied by local meth-

ods based on ternary or higher-order thresholding

schemes, such as ILTP (1th), LTP (2nd), TS∆ (4th),

LQP (5th), STU× (7th), TS0 (9th) and STU+ (10th).

– Parametric descriptors are more accurate than non-

parametric ones. A representative example of this

trend is the better performance of TS∆ (paramet-

ric) with respect to its non-parametric counterpart

(TS0). In evaluating the performances of paramet-

ric methods we should not forget, however, that we

picked out the optimal results over a predefined set

of parameter values (Sec. 6.3). These results must be

therefore considered ‘optimized’, since the parame-

ter values are tuned for each dataset.

– There is a general trend of increasing performance

with increasing dimensionality (Fig. 11). Descrip-

tors that considerably deviate from this trend are

STU+ and STU× on one side (they perform re-

markably well with few features), and GLCM on the

other side (they perform rather poorly with many

features).

– Methods based on point-to-average thresholding out-

perform those based on point-to-point thresholding.

Fig. 11 clearly shows that descriptors which use the

grey level of a single pixel as a threshold (such as

LTP, BGC1 and LBP) are less accurate than their

’improved’ counterparts (namely ILTP, IBGC1 and

ILBP), in which the threshold is computed from the

entire neighbourhood. This trend is likely to be re-

lated to the thresholding method itself, though the

associated increase in dimensionality could as well

contribute to the improvement.

The experimental activity presented in this section

is mainly intended to establish a relative ranking of

texture descriptors within the HEP. Still, this leaves

the following question unsolved: how good are methods

belonging to the HEP when compared with the wider

universe of texture descriptors? To address this issue

we calibrated the performance of the HEP against ba-

sic image features (BIF-columns) [16]. As we mentioned

in Sec. 2.2, BIF is conceptually related to the HEP –

both are based on space partitioning – and therefore
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Table 4: Optimal parameter values.

Texture descriptor Parameters Dataset
1 2 3 4 5 6 7 8 9 10 11

CBP ∆ 4 16 7 {12, 14, 15} 12 11 8 13 4 12 8
CS-LBP ∆ 6 4 5 [6, 8] 9 17 2 11 3 4 6
CS-TS∆ ∆ 5 3 9 5 9 8 10 10 4 12 7
GTUC ∆ 8 13 6 4 10 8 6 11 4 9 7
ICS-TS∆ ∆ 3 10 6 8 8 8 7 11 3 9 9
ILTP ∆ 2 [1,3] 1 [1,7] 2 2 {1, 2} 1 1 2 1
LQP ∆1,∆2 3,4 3,4 3,4 3,{4,6} 2,6 1,6 2,6 1,5 1,5 3,5 3,4
LTP ∆ 3 [1,7] 5 [1,15] 7 7 2 5 2 6 2
STU+ ∆ 2 3 1 {1, 3, 6, 7} 10 4 4 4 2 4 2
STUx ∆ 1 3 3 [1,8] ∪ 11 4 5 4 7 1 5 3
TS∆ ∆ 7 [1,3] 5 [2,12] 4 2 1 4 1 4 2

the comparison is meaningful. Moreover, BIF showed

the best performance over three datasets at the time

Ref. [16] was submitted. Yet, there are considerable dif-

ferences that one should not forget: BIF is a multi-scale

(here we used four octave-spaced scales, as in [16]) and

filtering-based method, whereas the methods belonging

to the HEP are single-scale (3 × 3) and and employ no

filtering. As a consequence, basic image features need a

significantly larger support to be computed, a require-

ment that can negatively affect the results when the

images are small. This inconvenience can be solved ei-

ther by mirroring the image when filters overhang the

borders, or through toroidal wrapping. In the experi-

ments we employed the default implementation, which

is based on image mirroring, as provided to the authors

by the research group where BIF where developed. We

refer to this method as BIF-M. In order to make a fair

comparison, we maintained the same metric used for

the HEP (i.e. L1 distance). For the sake of complete-

ness, we also considered the implementation based on

toroidal wrapping, which is the approach used in Ref.

[16]). In this case similarity between BIF-columns is

evaluated through the Euclidean distance, as advocated

in Ref. [30]. We refer to this method as BIF-W (L2).

Our calibration reveals that, on average, the compar-

ison HEP vs. BIF leans in favour of the former (Fig.

11). Remarkable exception is the result obtained with

the UIUCTex dataset (Sec. 6.1.9): here we notice that

BIF clearly outperforms the other methods (Tab. 3).

As we mentioned above, this peculiar result is likely

to be related to image size: of the datasets considered

here UIUCTex is in fact the one with the largest image

samples.

We conclude this section with a final consideration.

In our view, most of the research related to texture

analysis has followed, up to now, a merely heuristic ap-

proach, i.e.: a texture descriptor is considered ‘good’ or

‘bad’ on the basis of the experimental accuracy alone,

without any further investigation about its theoretical

foundations. There are, though, some remarkable ex-

ceptions, such as CLBP [31], which the authors jus-

tify in terms on certain signal reconstruction properties,

BGC [22], which is shown to implement a high-entropy

space partitioning strategy and CCR [61] – though in

this case the analysis is limited to the reconstruction

properties of the method with binary and periodic tex-

ture. The fact that the first two methods appear in the

first 11 positions of the ranking is not accidental, in our

view, suggesting that experimental accuracy and firm

theoretical background are closely related.

6.6 Effects of resolution and type of patterns

In Sec. 4.4 we have mentioned that rotation-invariant

and multi-scale variations have been proposed only for

a small subset of the methods presented in Sec 3. It is

for this reason that we limited our comparison to the

basic 3× 3 versions. Multi-resolution and rotationally-

invariant formulations, however, are likely to affect the

results. LBP is perhaps the method that has been stud-

ied most extensively, under this perspective, and that

triggered the highest number of variations [65]. For the

sake of completeness we compared the results of LBP

variants on some of the datasets to show the influence of

multi-resolution and of the different kind of patterns on

the performance of the method (Tab. 5). LBP variants

are indicated as in Ref. [85].

The results show that resolution and pattern type

have an appreciable effect on the performance. We see

that in general LBP3×3 outperforms the other variants.

Indeed, if we extend the experiment to all datasets (the

complete results have been omitted to avoid unneces-

sary burden), and compute the ranking of LBP vari-

ants, we find that the first three positions are occu-

pied, respectively, by: LBP3×3 (1st), LBPri8,1 || LBPriu2
16,2

|| LBPriu2
24,3 (2nd) and LBPri8,1 || LBPriu2

16,2 (3rd). The fact

that LBP3× 3 leads the ranking of LBP variants rein-
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Fig. 11: Ranking. Abbreviations: CLBP S M×C = CLBP S || (CLBP M × CLBP C); CLBP S×M×C = CLBP S

× CLBP M × CLBP C; CLBP C×M = CLBP C × CLBP M; CLBP M×S = CLBP M × CLBP S. Black dots

indicate parametric methods.

Table 5: Performance of LBP variants.

LBP variant
Dataset

3 5 6 9

LBP3×3 97.26 89.67 83.51 78.22
LBPri

8,1 91.24 78.81 69.83 72.42

LBPri
16,2 98.04 82.13 68.15 74.34

LBPriu2
8,1 87.53 78.88 69.32 70.79

LBPriu2
16,2 96.29 80.81 67.60 73.56

LBPriu2
24,3 95.36 77.13 69.68 73.23

LBPriu2
8,1 || LBPriu2

16,2 96.28 84.30 79.50 77.77

LBPriu2
8,1 || LBPriu2

16,2 || LBPriu2
24,3 97.59 86.03 82.06 79.58

forces the use of the 3×3 implementation as a basis for

the comparison presented in Sec. 6.5.

7 Conclusions and perspectives

In this paper we have described a general framework

for texture analysis which we refer to as HEP (His-

tograms of Equivalent Patterns). The common trait of

the methods belonging to the HEP is that each texture

descriptor determines a partition of the grey-scale pat-

tern space into equivalence classes. Such a partition is
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established a priori in the HEP, and is based on the

definition of a local or global function (kernel function)

of the pixel values. This approach is therefore alterna-

tive to those based on a posteriori space partitioning,

which is typical of methods based on codebooks learnt

from data. Diverse texture descriptors can be seen all to

be examples of HEP. We have indeed revisited an am-

ple set of apparently diverse methods and showed that

they can be represented in a very neat manner within

the HEP. In the experimental part we have carried out

a performance characterization of all such published

schemes over a wide range of datasets and identified the

best descriptors as ILTP among the parametric meth-

ods and CLBP S || (CLBP M × CLBP C) among the

non-parametric ones. We also observed the following

general patterns: 1) multi-level discretization is more

effective than binarization; 2) the higher accuracy of

parametric methods when compared to non-parametric

ones; 3) a general trend of increasing performance with

increasing dimensionality; and 4) methods based on

point-to-average thresholding outperform their coun-

terparts based on point-to-point thresholding – a trend

partly explainable by the associated increase in dimen-

sionality. With regard to the second point, however, is

it fair to mention that parametric methods entail the

disadvantage of needing to establish, beforehand, opti-

mal values for the ∆s. In practical applications their

use is recommendable when one has at his own dis-

posal enough data to preliminary tune the parameter’s

values. Calibration against state-of-the-art basic image

features shows that the best HEP methods are better

than BIF-columns for small images, but this trend is

reversed for larger images (see Tab. 3).

We would like to emphasize once more that the es-

tablishment of a texture descriptor belonging to the

HEP is a matter of defining an appropriate kernel func-

tion which induces a partition of the grey-scale pattern

space into equivalence classes. We believe that this idea

opens up appealing perspectives for future research. A

possible approach could be the study of functions with

some desirable properties, such as invariance against ro-

tation, grey-scale changes or other transformations, and

maximization of the amount of information (entropy)

associated with the partitioning scheme. Another di-

rection for future investigation is related to parame-

ter optimization for those methods (e.g.: TS∆, LTP,

LQP, etc.) that depend on one or more parameters.

At present the values of these parameters are in fact

determined through trial-and-error, and no criterion is

available to compute them on a theoretical basis.

Finally, it is fair to mention that in the experiments

we have used several dataset containing rather simi-

lar kinds of images. In most cases these represent nat-

ural/artificial materials and natural scenes. Therefore

the above conclusions may not directly extend to ap-

plications such as texture-based satellite imagery seg-

mentation or pedestrian detection. A direction for fu-

ture work could be the extension of the present study

to these domains.
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