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Abstract

In this paper we consider the problem of colour-based sorting hardwood
parquet slabs into lots of similar visual appearance. As a basis for the
development of an expert system to perform this task, we experimentally
investigate and compare the performance of various colour descriptors (i.e.:
soft descriptors, percentiles, marginal histograms and 3D histogram), and
colour spaces (i.e.: RGB, HSV and CIE Lab). The results show that simple
and compact colour descriptors, such as the mean of each colour channel, are
as accurate as more complicated features. Likewise, we found no statistically
significant difference in the accuracy attainable through the colour spaces
considered in the paper. Our experiments also show that most methods are
fast enough for real-time processing. The results suggest the use of simple
statistical descriptors along with RGB data as the best practice to approach
the problem.
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1. Introduction

Wood is a widely used and greatly appreciated material. Countless are
its applications in various industrial sectors including construction, interi-
ors, furniture and shipbuilding. Like other products such as natural stone,
ceramics, leather and similar, wood is mostly appreciated for its appearance;
a feature that determines, to a great extent, its price. When wood is used
for flooring, decking or façade cladding (in this case we usually refer to it
as engineered wood), strict selection procedures are needed to assure satis-
factory aesthetic results. To obtain beautiful and uniform surfaces, wood
has to be carefully graded by fibre type and colour tone. In an increasingly
globalised and competitive market, it is mandatory that wood products –
particularly those of high range – be virtually extent of any defects. In an
endeavour to meet such requirements and increase market shares, producers
are trying to drastically improve their quality standards. In this context
quality inspection plays a central role.

As noted by Bombardier and Schmitt (2010), wood quality inspection
involves two different and clearly separated problems: 1) detection, localiza-
tion and classification of surface defects; and 2) sorting products into lots
of similar appearance. In the parquet industry the two processes are usu-
ally carried out sequentially and in this order. Both can be performed either
manually or automatically. Technically speaking the first problem is referred
to as grading and is related to detecting, measuring and counting superficial
defects like knots, pockets, stains, veins, cracks, etc. Domain-specific stan-
dards (DIN-EN-975-1, 2011; DIN-EN-975-2, 2004; DIN-1611, 2002) define
different wood grades on the basis of the number and size of such defects
along with procedures to their measurement and detection.

As for the second problem, we can find it referred to as sorting (Lu
et al., 1997), colour classification (Kurdthongmee, 2008), or, again, grading
(Vienonen et al., 2002; Faria et al., 2008). To avoid confusion, throughout
this paper we use the term grading to refer to the first problem and sorting
for the second.

When performed manually, grading is stressful and time consuming,
though, in general, not particularly demanding, since defects are usually
quite evident. In contrast, sorting products into groups of similar appear-
ance is more subtle, since products of the same class may have differences in
tone which can be very slight and difficult to detect even to a trained eye.
In addition this process requires more than one slab to be observed at the
same time. Subjective and environmental conditions, tiredness, boredom
and other factors can significantly affect the outcome of the process. To this
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Table 1: Summary list of methods for colour-based wood sorting.

Reference Method Colour descriptor Colour space

Arden (1991) Image-based Marginal histograms RGB
Lu et al. (1997) Image-based 3D histogram RGB
Vienonen et al. (2002) Spectrum-based Spectral histogram Spectrum
Kurdthongmee (2008) Image-based One marginal histogram (hue) HSV
Hrčka (2008) Image-based Mean + Standard deviation CIE Lab
Faria et al. (2008) Image-based Approx. marginal histograms HSV, CIE Lab
Schnabel et al. (2009) Spectrum-based Mean CIE Lab
Bombardier and Schmitt (2010) Image-based Mean + Homogeneity CIE Lab + HSV
Buchelt and Wagenführ (2012) Spectrum-based Mean CIE Lab

we should add that recent studies showed how colour perception can be sig-
nificantly influenced by age and socio-economical level of the subject (Kose,
2008). Our personal experience indeed confirms that different operators can
produce very dissimilar results. Beginning with these considerations, it is
therefore no surprise that the agreement between different operators can be
as low as 60% (Roz̆man et al., 2006). As a consequence, manual inspection
procedures can produce batches of products with significant variations of the
visual appearance, causing sales returns and significant economical losses.

Parquet producers are therefore more and more concerned with the de-
velopment of computer vision systems capable of carrying out automatic
quality control procedures. In this paper, in particular, we are concerned
with the second problem, that of measuring and comparing the visual ap-
pearance of parquet slabs in order to sort them according to suitable simi-
larity criteria. More specifically we focus on the problem of colour sorting
slabs of the same grade and quality. This consists of dividing a previously
graded batch of parquet hardwood into different colour tones, among which
differences in colour are usually very slight, yet noticeable. To this end we
experimentally compare the effectiveness of a set of colour descriptors and
spaces. We also discuss issues related to image acquisition and processing
including computational time, which are of primary importance when it
comes to designing and implementing practical, real-time solutions.

The remainder of the paper begins with a brief survey of related research
(Sec. 2). In the following sections we give a description of the materials
(Sec. 3) and methods (Sec. 4) used in our research. In Sec. 5 we present
the experimental activity followed by results (Sec. 6) and conclusions (Sec.
7).
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2. Related research

The first applications of computer vision to the wood industry date back
to the 1980s (Conners et al., 1983; Sobey and Semple, 1989). Literature
review shows that, since then, research has mostly focused on the prob-
lem of grading. Studies have confirmed that it is possible to replace man-
ual graders with automatic systems improving production effectiveness and
product quality (Lycken, 2006; Kline et al., 2006). A preliminary step to
automatic grading is defect detection and characterization. This has been
typically approached using spectral features (Åström et al., 1999), spectral
and X-ray features (Bond et al., 2002), colour features (Conners et al., 1992;
Ciccotelli and Portala, 1992) and combinations of colour and texture features
(Kyllönen and Pietikäinen, 2000; Gu et al., 2010). Other authors focused on
how to deal with the grading problem once defects have been detected and
located (Lycken, 2006; Castellani and Rowlands, 2009). For an up-to-date
survey on automatic wood grading readers are referred to the work of Jabo
(2011).

A more recent application of computer vision to wood products is the
automatic identification of wood types (Labati et al., 2009). This is about
identifying the different types of wood that make up wood shipments; a
procedure that has been used to detect illegally-traded timber (Hermanson
and Wiedenhoeft, 2011).

Herein we are concerned with the problem of sorting parquet hardwood
into different colour tones. We therefore assume that hardwood has been
already graded, either automatically or manually. A round-up of the meth-
ods presented in this paragraph can be found in Tab. 1. Piuri and Scotti
(2010) noted that approaches to colour-based sorting can be divided into two
groups: image-based and spectrum-based processing systems. Both groups
have pros and cons. Spectrum-based systems have the advantage of relying
on device-independent data, but the disadvantage of a limited inspection
area, which does not allow for full-field measurements. Conversely, image-
based systems enable full-field inspection, but need colour calibration to
produce device-independent data. Vienonen et al. (2002) described a spec-
trophotometric system which takes four circular samples of approximately
20mm radius each from each parquet block. A 56-bin spectrum (from 275
to 965 nm) is computed from each block and used as feature vector. Clas-
sification is based on two approaches: minumum distance classifier and a
subspace classifier. Likewise, Buchelt and Wagenführ (2012) used a spec-
trophotometer to evaluate colour differences of native wood surfaces. In
their approach spectral data are converted into CIE Lab to estimate the
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intra-class colour difference (∆E∗
ab) of different species. In the same way,

Schnabel et al. (2009) use spectrophotometric data and convert them into
CIE Lab to model colour changes that wood undergoes during its lifetime.

Methods based on image processing work with the output of industrial
cameras, which is usually a set of RGB triplets. These can be either used
‘as is’ or converted into different colour spaces, such as HSV, CIE Lab, etc.
In both cases the aim is to extract global statistical descriptors that char-
acterize the colour content of the images. In the design of an expert system
for wood sorting based on image processing, one has to deal with the choice
of the right colour space and the appropriate descriptor. Related literature
shows that various solutions have been proposed in the past. Lu et al. (1997)
described a system based on 3D RGB histograms and minimum distance
classifier for real-time colour sorting of edge-glued panel parts reporting an
accuracy ranging from 83,0% to 99,1%. Kurdthongmee (2008) described an
approach for colour-based classification of rubberwood boards for fingerjoint
manufacturing in which a neural network is fed with a normalized histogram
of hue (H). In a qualitative study Hrčka (2008) investigated the use of colour
features to classify between common beech and European spruce, showing
that colour coordinates in the CIE Lab space separate the two species rather
well. Faria et al. (2008) employed both device-dependent (HSV) and device-
independent (CIE Lab) colour coordinates for sorting three different types
of wood, namely cherry tree, beech tree and oak. Their method employs a
fuzzy classifier based on a bell membership function for each of the colour
coordinates. More recently Bombardier and Schmitt (2010) used mean and
homogeneity extracted from CIE Lab and HSV channels as colour features,
and a fuzzy reasoning classifier as the building blocks of an expert system
for wood colour recognition.

This review of image processing-based methods shows that a wide vari-
ety of approaches have been proposed in literature, but, at the same time,
leaves the reader uncertain about which is the ‘best practice’ when it comes
to designing and implementing an automatic sorting system. The results
presented in the papers cited above look in fact rather scattered, inhomoge-
neous and therefore difficult to compare to each other. Even more difficult
is to reproduce the results presented in them, for data and algorithms used
in the experiments are not available. Lastly, it is worth noticing that none
of the above cited works provides a comparative analysis of methods on a
statistical basis. As a consequence it is difficult to provide sensible answers
to questions like: Which colour descriptor gives the best accuracy? Is there
a colour space superior to the others? What is the trade-off between accu-
racy and computational payload? In the following sections we try to answer
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Figure 1: The imaging system.

these questions on the basis of a comparative experimental analysis.

3. Materials

We considered 14 classes of common parquet hardwood of different type,
treatment and finish, as detailed in Tab. 3. The number of colour tones
for class ranges from two to four, whereas the number of samples for tone
ranges from six to eight. All the materials considered in the experiment are
top-quality, therefore containing none to very few minor defects. Prelimi-
nary subdivision of the samples of each class into the different colour tones
(‘ground truth’) has been carefully performed by a pool of experienced work-
ers.

Images of the hardwood parquet specimens have been captured through
an imaging system composed of a dome illuminator (Monster Dome Light
18.25”), an industrial CMOS camera equipped with a 6 mm fixed focal
length lens and three pins to support the dome (Fig. 1). Characteristics and
settings of the camera and lens are reported in Tab. 2. This solution leaves
enough space for the specimen to pass below the dome and the camera,
as if it were carried by a conveyor belt, a set-up which closely resembles
the industrial conditions in which the system is supposed to operate. The
camera is attached to the dome through a custom-designed support which
permits relative rotation between the camera and the dome around the focal
axis of the camera. The imaging system is patent pending (Bianconi et al.,
2012a).

The voltage of the illuminator has been set to 18 V and maintained
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Table 2: Characteristics and settings of the camera and lens.

Camera

Model Edmund Optics 5012C LE
Red gain 1.78 ×

Green gain 1.00 ×

Blue gain 1.33 ×

Gamma correction No
Resolution 2560 × 1920
Debayering quality High
Image format RGB24 (.bmp)

Lens

Model Pentax H614-MQ
Focal length 6 mm (fixed)
Aperture value 5.6
Focus ≈30 cm

constant throughout the image acquisition procedure. This provides a light
level of about 78600 lx at the center of the field of view. In order to avoid
colour artifacts arising from image binning and/or undersampling, images
have been taken at the native resolution of the camera (2560 × 1920 pix-
els), which corresponds to a spatial resolution of approximately 180 dpi.
Preliminary white balance has been carried out to adjust colour rendition.

4. Methods

In the following two subsections we review the colour descriptors (Sec.
4.1) and spaces (Sec. 4.2) considered in this paper. In Sec. 4.3 we also
discuss the problem of converting colour data from a device-dependent space
into a device-independent one.

4.1. Colour descriptors

Colour descriptors are statistical parameters that summarize the colour
content of an image irrespectively of the spatial distribution. Consequently
they are invariant to translation and rotation, and only slightly dependent
on the viewing angle. By contrast, they are highly sensitive to changes in
illumination. It is therefore mandatory that this be kept constant during the
acquisition process, a condition that can be obtained, for instance, through
the imaging device used in our experiments (Fig. 1). In real working condi-
tions we can safely assume that similar devices can be adopted to produce
invariable illumination conditions.
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Table 3: Summary list of the hardwood parquet samples used in the exper-
iments.

Wood
class

Botanical
name

Treatment Tones Samples /
tone

Image
resolution

1 Clorophora

excelsa
None 8 1200 × 600

2
Quercus

petrea
Painted 8 1500 × 500

3
Quercus

petrea

UV-treated,
painted

8 1300 × 1000

4
Quercus

petrea
Painted 8 1400 × 480

5
Quercus

petrea
None 6 1300 × 480

6
Quercus

petrea
UV-treated,
brushed

8 1400 × 1300

7
Quercus

petrea

Oil-treated,
hand-planed,

painted
7 1400 × 1300

8
Quercus

petrea

Oil-treated,
hand-planed

8 1500 × 1300

9
Quercus

petrea
Thermo-
treated

8 1500 × 1300

10
Quercus

petrea
Thermo-
treated

8 1500 × 1300

11
Quercus

petrea
Brushed 8 1400 × 1300

12
Quercus

petrea
Oil-treated 8 2000 × 600

13
Tectona

grandis
None 8 1600 × 600

14
Tectona

grandis
None 8 1200 × 600
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Table 4: Colour descriptors used in the experiments. Average extraction
and classification time (in seconds) refer to the equipment described in Sec.
5.2

Color descriptor No. of features Avg. extraction time (a) Avg. classification time (b) (a + b)

Mean 3 0.236 0.029 0.265
Mean + hom. 6 0.863 0.030 0.894
Mean + std 6 0.439 0.028 0.468
Mean + std + mom. 15 8.059 0.028 8.087
Quartiles 9 2.218 0.028 2.246
Quintiles 12 2.234 0.028 2.263
Marg. hist. (8 × 3) 24 0.542 0.029 0.571
Marg. hist. (16 × 3) 48 0.571 0.029 0.600
Marg. hist. (32 × 3) 96 0.610 0.029 0.639

3D hist. (83) 512 0.705 0.029 0.734

4.1.1. Soft colour descriptors

López et al. (2008) introduced the term soft colour descriptors to refer
to different combinations of the following simple statistical parameters:

• Mean

µc =
1

n

n
∑

i=1

Ic,i (1)

• standard deviation

σc =
1

n− 1

√

√

√

√

n
∑

i=1

(Ic,i − µc)
2 (2)

• k-th moment

mc,k =
n
∑

i=1

(Ic,i − µc)
k
hc (Ic,i) (3)

In the above equations n is the number of pixels in the input image, Ic,i
the intensity of the i-th pixel in the c-th colour channel, hc(x) the probability
of the intensity value x in the c-th channel (usually estimated through a
discrete histogram – hence the symbol hc, as in Eq. 4) and µc the average
intensity value of the c-th channel. Throughout the paper we assume that
Ic,i ∈ [0, 1] in any colour space. In our implementation this is obtained
through appropriate normalization of the input data.

Soft descriptors are easy to implement and fast to compute, therefore
particularly suitable for real-time processing. Different combinations of soft
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colour descriptors proved effective in applications ranging from grading of
stoneware tiles (López et al., 2008) to sorting of recyclable paper (Rahman
et al., 2011). In particular, mean values of the R, G and B channels alone
showed surprisingly good performance in many tasks including automatic
grading of ceramic tiles (Kukkonen et al., 2001) and banknote recognition
(Garćıa-Lamont et al., 2012). Recently, Bombardier and Schmitt (2010)
approached the problem of wood colour recognition by combining mean and
homogeneity in the CIE Lab space. As for homogeneity, herein we used the
following definition:

homc =
L
∑

l=1

hc [x (l)]

x (l)
(4)

where x (l) represents the intensity value corresponding to the l-th bin of
the histogram hc. In our implementation the value x (l) is measured at the
centroid of each bin. Since bins’ edges are monotonically-increasing values
in [0, 1], this approach ensures that Eq. 4 generates no division by zero. For
this reason the definition of homogeneity used here is slightly different from
the one proposed in the original references (Bombardier and Schmitt, 2010;
Schmitt, 2007). In that case, in fact, a division by zero may occur when
i = 0 (see Schmitt, 2007, Eq. 3.24).

4.1.2. Colour percentiles

A percentile is the value that cuts the distribution of a random vari-
able into two parts so that a given percent of observations fall below that
value. Colour percentiles are generally computed from each colour channel.
In wood grading they have been used both alone and in combination with
textural features. Kauppinen (2000) employed colour percentiles alone in a
non-segmenting method for grading parquet slabs. Niskanen et al. (2001)
used colour percentiles in combination with either co-occurrence features or
Local Binary Patterns for identification of knots in wood inspection. Re-
cently Bianconi et al. (2012b) proved the method effective also in automatic
classification of granite tiles. In the experiments presented herein, we used
quartiles and quintiles of each colour channel. These are the values that cut
the probability distribution of the intensity into equally-populated groups
each containing 1/4 and 1/5 of the population, respectively.

4.1.3. Marginal histograms

Marginal histograms estimate the colour content of an image through
the probability distribution of colours as a function of each channel sepa-
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rately, thus discarding any information about the other channels. Marginal
histograms can be considered as projections of the 3D colour histogram (dis-
cussed in the following subsection) into three one-dimensional subspaces.
Herein we considered histograms composed of 8, 16 and 32 bins for each
channel, giving 24, 48 and 96 features, respectively (see Tab. 4). Marginal
colour histograms performed well in practical applications such as classifica-
tion of printed colour paper (Pietikäinen et al., 1996), natural rocks (Lepistö
et al., 2005) and generic colour textures (Bianconi et al., 2011a). In colour-
based wood sorting their use has been propounded by Arden (1991) and,
more recently, by Kurdthongmee (2008).

4.1.4. 3D colour histogram

The 3D colour histogram estimates the joint probability distribution in
the colour space. The method, which was originally proposed by Swain
and Ballard (1991), consists of dividing the colour space in parts of equal
volume and counting how many times each part is represented in the input
image. Lu et al. (1997) used the 3D colour histogram for colour sorting edge-
glued wooded panels. In our experiments we adopted the implementation
proposed by Mäenpää and Pietikäinen (2004) in which the colour space is
partitioned by dividing each colour channel into segments of equal length.
Since we used eight subdivisions for each channel, the method generates
83 = 512 features.

4.2. Colour spaces

Critical to the application studied herein is the choice of the right colour
space. This can be either a device-dependent or a device-independent one.
Device-dependent spaces are not directly related to how the human vision
system perceives colours: they simply encode device-specific data at the
device level (Kang, 2006). Device-dependent spaces include additive spaces,
such as RGB and HSV, and subtractive spaces (not considered here). In
contrast, device-independent colour spaces (also called colorimetric spaces)
are directly related to the human vision system. Their main objective is
in fact to define colour coordinates that are universally valid for the group
of normal observers (Wyszecki and Styles, 1982). The basic colorimetric
space is CIE XYZ. Any colour space that can be directly transformed into
CIE XYZ is device-independent. A colour space is said uniform when the
Euclidean distance between colours in that space is proportional to colour
differences as perceived by humans. CIE Lab and CIE Luv are examples of
device-independent and uniform colour spaces.
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Related literature for a long time has debated about whether there is a
colour space superior to the others. Device-independent and uniform colour
spaces should be preferable – at least in principle – since they are inti-
mately related to the way humans perceive colours. This assertion, how-
ever, has not been clearly confirmed by the experiments. Comparison of
different colour spaces for image classification has in fact led, so far, to con-
tradictory or inconclusive results. Paschos (2001) found that perceptually
uniform/approximately uniform colour spaces (CIE Lab and HSV, respec-
tively) outperform RGB in many cases. By contrast, other authors found no
significant difference among the colour spaces considered in their works: in
a texture classification experiment Drimbarean and Whelan (2001) showed
that none of the RGB, HSI, CIE XYZ, CIE Lab and YIQ proved sufficiently
superior; likewise, Brunner et al. (1992) found no practically important dif-
ferences in performance among RGB, HSV, CIE Lab, CIE Luv and YIQ for
defect detection in Douglas-fir veneer. Finally, Qazi et al. (2011) recently
showed that CIE Lab outperforms RGB and IHLS with textured images,
but the trend is reversed for pure colour feature cues.

In this paper we considered the same colour spaces studied by Paschos
(2001), namely two device-dependent spaces (RGB and HSV) and one device-
independent space (CIE Lab). We believe these represent sensible and viable
choices for the problem studied herein. In practical applications the use of
RGB data is dictated by the availability of such data as direct output of
the imaging system. This avoids the computational overhead required to
convert RGB data into other colour spaces. RGB, however, is not percep-
tually uniform. HSV, in contrast, is approximately uniform and decouples
colour data into an intensity (V channel) and a chromatic part (H and S
channels). RGB colour data are converted to HSV through simple equations
(Kang, 2006). Finally, CIE Lab is a device-independent and uniform colour
space closely related to the human vision system. To obtain Lab colour
coordinates from RGB, one needs to colour calibrate the image acquisition
system. The procedure adopted hereis described in the following section.

4.3. Colour calibration

Colour calibration consists of determining a function that maps device-
dependent colour data into device-independent ones (León et al., 2006).
The form of the function is established a priori. Most commonly this is
a polynomial, but other methods, such as lookup tables (Po-Chieh, 1993)
and neural networks (Schettini, 1995) have been proposed as well. In our
experiments we adopted a simple linear model, which can be expressed in
the following way:
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where L̂∗, â∗ and b̂∗ represent the estimated CIE Lab colour coordinates.
This approach has some advantages: it is fast, easy to implement and re-
quires the estimation of few parameters. Moreover, previous experiments
showed that linear models perform as well as higher-degree models in colour
calibration (Bianconi et al., 2011b). In order to determine the parameters
of the model (the Mij coefficients), we need a set of reference colour patches

of which both the device-dependent [R,G,B]T and the device-independent
coordinates [L∗, a∗, b∗]T are known. The first are the raw output of the
imaging system, the second can be measured through a colorimeter or any
other colour measuring device. Most commonly device-independent colour
data come with the reference patches. Here we used a standard calibra-
tion set (X-Rite R© Color Checker) which contains 24 colour patches (Fig.
2). The corresponding device-independent data are available online (Babel-
Color, 2012).

Figure 2: The 24 reference colours of the X-Rite R© Color Checker.

The unknown parameters are estimated through a least-squares proce-
dure:

M =
arg min
Mij ∈ R

{

R
∑

r=1

[

(

L̄
∗

r − L̂
∗

r

)2

+ (ā∗

r − â
∗

r)
2
+

(

b̄
∗

r − b̂
∗

r

)2
]

}

(6)

where L̄∗, ā∗ and b̄∗ are the ‘true’ CIE Lab colour coordinates of the reference
colour patches, R is the number of the patches (24, in this case) and M the
matrix of Mij coefficients (Eq. 5).
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5. Experiments

In the experimental part we estimated the accuracy of the methods pre-
sented in Sec. 4. The experiments have been designed to replicate the
manual sorting process usually adopted in industry. In our experience this
works as follows: As a first step one or more workers select one represen-
tative wood sample for each tone of the class of wood which is going to be
produced thereafter (in our experiments tones range from two to four per
class). The samples are then passed to the worker in charge of the sorting
process (let us refer to him as the ‘selector’), whom in general is given a
short time to familiarize with the grades before the selection process begins.
During the selection process the selector takes a position from which he can
see both the tables to select (which are usually carried on a conveyor belt)
and the samples of each grade. Whenever a table arrives, the selector diverts
the slab to the storage bin corresponding to the sample that the specimen
resembles most. In practice the whole process is clearly a supervised clas-
sification task in which the samples represent the training set. Therefore,
in order to comparatively evaluate the performance of the colour descrip-
tors and spaces presented in the preceding sections, we submitted them to
a supervised classification task. For each wood class we considered all the
classification problems that can be generated by choosing one sample per
tone for training while leaving the others for validation. This procedure pro-
vides a deterministic estimation of the classification accuracy. The accuracy
estimated this way is also very realistic, in our view, because the appraisal
procedure matches the real working conditions quite well.

Given T the number of tones for each wood class and S the number
of samples for each tone (see Tab. 3), the classification accuracy a can be
expressed in the following way:

a =
1

PT (S − 1)

P
∑

p=1

Cp (7)

where P is the number of problems (P = ST ) and Cp the number of correctly
classified samples in the p-th problem. T (S − 1) represents the number of
samples to classify in each problem.

5.1. Classifier

The selection of the appropriate classifier is always a crucial and difficult
step in the design of an expert system. In this work two conditions limit
this choice drastically: 1) the need for a classifier that works even with one
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training sample only (see the considerations reported at the beginning of
Sec. 5), and 2) the absence of tuning parameters, which may significantly
modify the relative performance of the colour descriptors and spaces. This
considered, we thought that the 1-NN classifier would be the most appropri-
ate solution for the problem studied herein (in our implementation we used
the Euclidean (L2) distance). Absence of tuning parameters, easiness of
implementation and other desirable asymptotic properties make this classi-
fication strategy particularly suitable for comparative purpose. Furthermore
the 1-NN can work even with few training samples (as few as one, like in
this case), whereas other classifiers, such as SVM, cannot. Finally, recent
literature strongly supports the use of the 1-NN for performance compari-
son of image analysis algorithms (Crosier and Griffin, 2010; Guo et al., 2010;
Kandaswamy et al., 2011; Liu et al., 2012).

5.2. Implementation, execution and reproducible research

Methods and algorithms have been implemented in Matlab
R© R14. Im-

age acquisition and classification have been performed in the Department
of Industrial Engineering, at the University of Perugia, on a laptop PC
equipped with Intel

R© T2300, 1GB RAM, and Windows
TM

XP – 32 bits,
Service Pack 3. For reproducible research purposes, all the data required
to replicate the experiments (i.e.: source code, images and subdivisions into
train and validation sets) are available in Ref. PG (2012)1.

6. Results

Classification accuracies for each colour descriptor, wood class and colour
space are reported in Tab. 5. On average the results confirm the effectiveness
of the methods considered in the paper, with most methods attaining an
accuracy close to 90%.

For comparison purposes we have computed the 95% confidence intervals
of the mean classification accuracy attained by each colour descriptor in each
of the three colour spaces (Fig. 3). Since data (average accuracies) are not
normally-distributed, confidence intervals for the means have been estimated
through percentile bootstrap (Schmidheiny, 2012). The procedure consist of
drawing a number B of bootstrap samples, computing the distribution of the
mean over the bootstrap samples and deriving the lower and upper bounds
of the confidence interval as the 2.5 and 97.5 percentiles of such distribution.

1To access the page: user = parquet, psw = sorting
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Table 5: Average classification accuracy.

Colour descriptor Wood class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg.

RGB

Mean 94.9 87.9 69.0 97.7 94.8 100.0 86.8 86.2 71.4 89.9 97.3 100.0 91.9 81.2 89.2

Mean + hom. 94.7 87.7 69.0 97.7 94.8 100.0 87.2 86.2 69.6 86.6 97.3 100.0 91.8 81.1 88.8

Mean + std 95.1 88.3 67.6 97.7 95.0 100.0 87.9 86.1 72.2 90.2 97.3 100.0 91.5 81.4 89.3

Mean + std + mom. 95.1 88.3 67.6 97.7 95.0 100.0 87.9 86.1 72.2 90.2 97.3 100.0 91.5 81.4 89.3

Quartiles 95.1 87.9 68.9 97.9 95.6 100.0 88.3 87.1 70.8 90.0 97.5 100.0 91.2 81.3 89.4

Quintiles 94.6 86.5 67.4 97.7 95.0 100.0 88.3 87.2 71.9 90.3 97.4 100.0 91.1 80.9 89.2

Marg. hist. (8 × 3) 91.2 83.5 67.1 97.0 90.4 100.0 85.3 86.9 57.9 83.8 97.9 100.0 84.7 85.5 86.5

Marg. hist. (16 × 3) 87.7 89.4 65.5 98.7 90.9 100.0 87.1 86.5 67.3 90.0 97.7 100.0 88.1 82.5 88.0

Marg. hist. (32 × 3) 94.0 87.6 64.6 98.4 94.4 100.0 91.6 87.6 68.6 89.5 98.1 100.0 89.1 80.5 88.9

3D hist. (83) 88.5 82.8 65.3 99.4 87.8 100.0 85.5 85.9 53.0 80.4 98.3 100.0 80.9 85.9 85.3

Avg. 93.1 87.0 67.2 98.0 93.4 100.0 87.6 86.6 67.5 88.1 97.6 100.0 89.2 82.2 88.4

HSV

Mean 94.1 86.0 68.8 97.9 94.4 100.0 90.5 74.9 77.3 93.3 95.3 100.0 86.5 84.2 88.8

Mean + hom. 94.4 84.5 68.9 97.9 94.4 100.0 88.0 75.6 77.5 93.5 95.3 100.0 86.6 84.5 88.6

Mean + std 94.7 86.4 67.3 97.9 94.3 100.0 89.3 73.9 76.2 93.6 95.3 100.0 85.7 85.1 88.6

Mean + std + mom. 94.7 86.4 67.3 97.9 94.3 100.0 89.3 73.8 76.1 93.6 95.3 100.0 85.7 85.1 88.5

Quartiles 95.6 85.6 67.9 98.0 95.6 100.0 89.8 74.7 77.5 93.2 95.9 100.0 86.8 83.4 88.8

Quintiles 94.6 84.6 67.3 98.1 94.6 100.0 90.4 74.4 77.8 94.0 95.5 100.0 87.1 83.4 88.7

Marg. hist. (8 × 3) 90.6 88.7 66.5 100.0 87.0 100.0 89.1 74.1 63.6 88.5 97.3 98.4 74.4 84.3 85.9

Marg. hist. (16 × 3) 89.3 86.6 64.8 97.8 89.6 100.0 88.3 85.4 79.5 92.0 97.2 100.0 84.2 86.0 88.6

Marg. hist. (32 × 3) 95.2 86.2 64.1 97.3 94.4 100.0 93.3 83.8 77.9 92.4 98.5 100.0 83.6 80.2 89.1

3D hist. (83) 89.2 63.2 62.8 100.0 87.6 100.0 59.6 58.3 46.5 77.6 97.7 98.3 59.9 80.7 77.2

Avg. 93.2 83.8 66.6 98.3 92.6 100.0 86.8 74.9 73.0 91.2 96.3 99.7 82.1 83.7 87.3

Lab

Mean 94.7 87.9 68.9 96.4 95.0 100.0 87.1 85.3 76.1 91.7 97.7 100.0 91.9 81.4 89.6

Mean + hom. 94.7 87.9 68.9 96.4 95.0 100.0 87.1 85.3 76.1 91.7 97.7 100.0 91.9 81.4 89.6

Mean + std 95.0 88.1 67.7 96.4 95.0 100.0 88.2 85.0 75.7 92.0 97.7 100.0 91.7 81.5 89.6

Mean + std + mom. 95.0 88.1 67.7 96.4 95.0 100.0 88.2 85.0 75.7 92.0 97.7 100.0 91.7 81.5 89.6

Quartiles 95.5 88.5 67.6 96.4 96.3 100.0 88.0 85.9 75.4 91.5 98.4 100.0 91.7 80.9 89.7

Quintiles 95.1 87.5 67.4 96.9 94.8 100.0 88.8 86.5 75.8 91.5 98.4 100.0 92.4 81.6 89.8

Marg. hist. (8 × 3) 87.7 65.3 65.0 86.4 94.6 100.0 79.7 87.4 70.4 88.3 90.1 100.0 78.6 61.9 82.5

Marg. hist. (16 × 3) 95.8 81.5 63.4 96.3 91.7 100.0 82.5 83.9 78.5 92.5 99.0 100.0 89.8 80.0 88.2

Marg. hist. (32 × 3) 96.2 87.7 62.6 90.0 95.4 100.0 92.4 79.1 81.3 94.9 99.8 100.0 91.1 80.0 89.3

3D hist. (83) 87.7 64.7 65.1 85.5 96.7 100.0 79.9 87.4 70.4 88.2 86.5 100.0 79.0 61.9 82.4

Avg. 93.8 82.7 66.4 93.7 94.9 100.0 86.2 85.1 75.5 91.4 96.3 100.0 89.0 77.2 88.0
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(c) CIE Lab

Figure 3: Confidence intervals for the average classification accuracy (%) in
the three colour spaces.

Parameter B needs to be set by the user: Schmidheiny (2012) recommends
using 1000 or more replications; herein we used 2000, as suggested by Wang
(2001).

We observe that in none of the three colour spaces there is a colour
descriptor significantly superior to the others. Indeed Fig. 3 clearly shows
large overlap among all the confidence intervals. It is interesting to notice
that the simplest descriptor (mean of each colour channel) performs as good
as the others. In contrast, the performance of 3D colour histograms is
appreciably lower – though, as we mentioned above, this difference does
not reach statistical significance. This result is logical and stems from the
intrinsic structure of colour histograms (Bianconi et al., 2009): since colour
differences between grades are very subtle (see Fig. 3) colours tend to spread
over a limited portion of the colour space. Therefore, while different colours
can be assigned to the same bin of the 3D histogram, many other bins
remain empty. The same considerations apply to marginal histograms: here

17



we notice that accuracy improves as the number of subdivisions increases,
as one would expect, since a finer subdivision of each colour axis allows
for better discrimination between tones. Soft colour descriptors show very
similar performance, suggesting that it is not much use adding higher-order
statistical descriptors to the simple mean. Likewise, colour percentiles do
not represent a significant improvement on soft colour descriptors.

80 90 100

RGB

HSV

CIE Lab

Figure 4: Confidence intervals for the average classification accuracy (%) for
each colour space.

As for colour spaces, the results show that there is very little difference
among RGB, HSV and CIE Lab: none of them proved significantly superior.
These findings confirm the conclusions obtained by Brunner et al. (1992) and
Drimbarean and Whelan (2001). These results suggest that RGB data are
better employed with no changes or modifications: converting them into
other colour spaces only adds unnecessary overhead without appreciable
beneficial effects. We also notice that the general trend is very similar for
the three colour spaces, showing no appreciable interaction effects between
colour descriptor and colour space.

Finally, it is worth mentioning that the overall processing time (feature
extraction + classification) is rather contained, with most descriptors com-
pleting the task in less than 1 sec. (see Tab. 4). We can see that most of
the variability in computing time is due to feature extraction, whereas 1-NN
classification requires almost the same amount of time for all descriptors.
Furthermore, we should not forget that these figures have been obtained
using a scripting language running on low cost hardware; therefore they
largely overestimate the real computing time that can be achieved through
dedicated hardware and optimized code.
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7. Conclusions

In this paper we have presented a performance analysis of different colour
descriptors and spaces for sorting parquet slabs into classes of similar visual
appearance. To the best of our knowledge, this is the first comprehensive
study on the subject based on statistical analysis and reproducible experi-
ments.

The overall results show, on average, a low error classification process
with about 90% accuracy. Most methods are also computationally inexpen-
sive, therefore suitable for real-time processing. This outcome is satisfactory,
considering that the results have been obtained with standard industrial
equipment – specifically a single-sensor camera – and a very simple classifier
(1-NN). We believe that the overall accuracy could be significantly increased
by adopting higher-level imaging devices (i.e.: 3-sensor camera) and more
sophisticated classifiers. The comparative analysis showed no significant dif-
ference between the descriptors and colour spaces considered in the paper,
therefore suggesting – from both standpoints of accuracy and computational
efficiency – the use of simple statistical descriptors along with RGB data as
the best practice.
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Bianconi, F., González, E., Fernández, A., Saetta, S. A., 2012b. Automatic
classification of granite tiles through colour and texture features. Expert
Systems with Applications 39 (12), 11212–11218.

Bombardier, V., Schmitt, E., 2010. Fuzzy rule classifier: Capability for gen-
eralization in wood color recognition. Engineering Applications of Artifi-
cial Intelligence 23 (6), 978–988.

Bond, B. H., Kline, D. E., Araman, P. A., 2002. Differentiating defects in
red oak lumber by discriminant analysis using color, shape, and density.
Wood and Fiber Science 34 (4), 516–528.

Brunner, C., Maristany, A., Butler, D., VanLeeuwen, D., Funck, J., 1992.
An evaluation of color spaces for detecting defects in Douglas-fir veneer.
Industrial Metrology 2, 169–184.
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