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Abstract 
 

Traditionally texture analysis is approached either by statistically evaluating the distribution of the pixels 

in a local neighbourhood or by filtering the image with a bank of filters that are applied to capture the 

changes in the spatial/frequency domain. The aim of this paper is to review and provide a detailed 

performance evaluation of a number of texture descriptors that analyse texture at micro-level such as 

Local Binary Patterns (LBP) and a number of standard filtering techniques that sample the texture 

information using either a bank of isotropic filters or Gabor filters. The experimental tests were conducted 

on standard databases where the classification results are obtained for single and multiple texture 

orientations. In our study we have also analysed the performance of standard filtering texture analysis 

techniques (such as those based of LM and MR8 filter banks) when applied to the classification of texture 

images contained in standard Outex and Brodatz databases. 
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1. Introduction 
  
 

Textured surfaces are an omnipresent characteristic of digital images and their precise identification 

plays an important role in the development of computer vision algorithms that target real-world 

applications. Although there is no widely accepted definition for texture, many image analysis approaches 

attempted to model this fundamental property in conjunction with the human visual system (HVS). In this 

regard, many psychophysical studies demonstrated that texture perception and interpretation is an early 

neural mechanism of the HVS which plays an important role in the process of figure-ground segmentation 

(Julesz, 1981; Bergen and Adelson, 1988; Balas, 2006). According to these studies, texture can be 

conceptualised as a statistical or geometric repetition of primitive descriptors (micro patterns) in the 

image and specific measures such as roughness, regularity, linearity, frequency, directionality, granularity 

and density can be employed to attain texture discrimination (one prominent example is the theory of 

textons that has been proposed by Julesz (Julesz, 1981) in the early 80s). While the surfaces of the imaged 

objects are often defined by an unbounded variety of textures, the task relating to the identification of the 

optimal texture analysis approach proved extremely challenging and the substantial efforts devoted by the 

vision community in the field of texture analysis were justified, as the availability of a robust texture 

descriptor will be extremely beneficial for a large spectrum of applications (Manjunath and Ma, 1996; 

Kovalev et al, 2001; Mäenpää et al, 2003; Nammalwar et al, 2003; Ghita et al, 2005; Rodriguez and 

Marcel, 2006; Xie and Mirmehdi, 2007; Tosun and Demir, 2011). Due to its intrinsic complexity, this 

fundamental image property has been researched for a number of decades and there is a large degree of 

consensus among vision researchers that texture analysis can be divided into four major categories: 

statistical, model-based, signal processing and structural, with statistical and signal processing techniques 

being the most investigated. 

As indicated in numerous reviews on texture analysis (Chellappa et al, 1998; Materka and Strzelecki, 

1998; Tuceryan and Jain, 1998; Zhang and Tan, 2002; Petrou and Sevilla, 2006), statistical approaches 

evaluate the spatial distribution of the pixels in the image by calculating features using first and second–

order statistics (Haralick, 1979; Dyer et al, 1980; Haley and Manjunath, 1999). Among statistical texture 

analysis techniques the most investigated are based on the evaluation of the grey-level differences (first 



order statistics) and co-occurrence matrices (second order statistics). These techniques are viewed as 

“historical” approaches to texture analysis and since their introduction they have been further advanced to 

improve either their discriminative power or their computational cost (Tsatsanis and Giannakis, 1992; 

Valkealahti and Oja, 1998). More recently the research focus has been on signal processing-based texture 

analysis methods. With these techniques, the image is typically filtered with a bank of filters of differing 

scales and orientations in order to capture the changes between specific frequency bands in the analysed 

image (Coggins and Jain, 1985; Haley and Manjunath, 1999; Liu and Wang, 2003). Early studies 

attempted to analyse the texture in the Fourier domain (Weszka et al, 1976), but these approaches were 

clearly outperformed by techniques that either analyse the texture using multi-channel narrow band Gabor 

filters or perform texture decomposition using the wavelet representation (Mallat, 1989; Porter and 

Canagarajah, 1997; Weber and Casasent, 2001). The multi-channel texture decomposition approach was 

firstly introduced by Jain and Farrokhnia (Jain and Farrokhnia, 1991) when they applied dyadic Gabor 

filters (Daugman, 1988; Kamarainen et al, 2006) to extract the textural features from images defined by 

oriented patterns. Arising from the experimental results, the authors conclude that the spectral information 

sampled by the narrow-band filters is sufficient to robustly discriminate between different textures in the 

image. Other studies have shown that the Gabor representation is optimal in the sense of minimising the 

uncertainties in space/frequency decomposition (Daugman, 1988; Bovik et al, 1990; Dunn et al, 1995; 

Dunn and Higgins, 1995; Kachouie and Alirazae, 2005), but the main practical problem with this 

approach is the onerous computational cost required to filter the image with a large bank of filters. To 

address this issue, Randen and Husoy (Randen and Husoy 1999a; Randen and Husoy, 1999b) proposed a 

methodology to compute optimised narrow-band filters and they evaluated their performance with respect 

to complexity/feature separation on a large number of test images. A conceptually related technique was 

proposed by Manjunath and Ma (Manjunath and Ma, 1996) where they attempted to minimise the 

redundancies generated by the non-orthogonal Gabor wavelets in the implementation of adaptive texture 

descriptors for browsing and image retrieval. A distinct alternative to address the limitations associated 

with the standard multi-channel texture decomposition based on Gabor filters resides in the construction 

of a universal dictionary of textons which can be regarded as textural primitives that are able to describe 

any digital image. Building on this concept, Leung and Malik (Leung and Malik, 2001) were among the 



first to apply the texton-based representation to texture classification/recognition. In their work, the 

textons are calculated by clustering the responses of the filter bank (in this paper it is referred to as LM 

filter bank) into a set of prototype vectors that sample the principal texture characteristics. To this end, the 

authors proposed a bank of 48 filters that consist of a set of 36 oriented filters and 12 isotropic filters and 

the resulting textons were evaluated in the context of texture recognition.  The experimental data proved 

the efficiency of this approach (97% detection rate) and due to its sound theoretical foundation this 

texture decomposition scheme has been further developed by other researchers. In this regard, Varma and 

Zisserman in (Varma and Zisserman, 2002; Varma and Zisserman, 2004) redeveloped the LM filter bank 

by retaining only the maximum responses returned by the oriented filters at each scale, a fact that allowed 

the implementation of a rotational invariant filter bank (which was referred to as MR8). In their paper the 

authors performed a large number of experiments to identify the optimal filter bank and they conclude 

that rotational invariance can be achieved at the expense of a marginal decrease in classification accuracy. 

A related approach that also addressed the texton-based texture analysis was proposed by Cula and Dana 

(Cula and Dana, 2004) where the authors applied bi-directional feature histograms for 3D texture 

recognition.  

  A recent direction of research in the field of texture classification attempted to bridge the concepts 

behind statistical and geometric texture analysis approaches. As indicated earlier, the statistical texture 

analysis evaluate the first and second order statistics of the intensities and pixel positions in the image, 

whereas geometrical approaches regard the texture as the spatial arrangement of textural primitives. 

While at the first glance the statistical and geometric texture analysis methods appear antagonistic, several 

researchers (Ojala et al, 1994; Ojala et al, 2001; Ojala et al, 2002a; Ojala et al, 2002b; Rodriguez and 

Marcel, 2006; Petrou and Sevilla, 2006; Nammalwar et al, 2010) observed that these approaches have 

strong complementary characteristics that allow modelling the macro-texture as the distribution of micro 

textural descriptors (or texture units). In this regard, the introduction of the Local Binary Patterns (LBP) 

concept by Ojala et al in 1994 has represented a milestone in texture analysis. This assertion is motivated 

not only by the sheer amount of LBP-related research published in the literature (according to the 

http://www.cse.oulu.fi/MVG/LBP_Bibliography website 1047 papers were published on the topic of 

LBP), but also by the vast spectrum of application domains that were well served by the LBP-based 



texture analysis approach. Based on these compelling arguments, there is no doubt that LBP is one of the 

most researched areas in the field of texture analysis and it is the main objective of this paper to review 

this texture modelling approach from a theoretical and practical perspective. To further elevate the 

relevance of this paper, in this work we also assess the intrinsic characteristics of the LBP and 

mainstream signal processing texture analysis methods with a view of finding the commonalities (and 

differences) between these fundamental approaches in the process of texture modelling. Thus, in this 

paper we provide a detailed study that evaluates the performance of the LBP technique and a number of 

signal processing techniques that filter the image data with a bank of isotropic filters (Schmid, 2001), 

Gabor filters (Bovik et al, 1990; Dunn and Higgins, 1995) and texture analysis techniques that model the 

texture as a distribution of textons (Leung and Malik (LM) and Maximum Response (MR8) filter banks) 

(Leung and Malik, 2001; Varma and Zisserman, 2002; Varma and Zisserman, 2004). In the experimental 

section of this paper, the aforementioned techniques are evaluated on standard databases where the 

classification rate is calculated for one texture orientation and for multiple texture orientations. While the 

detailed performance evaluation represents the major contribution associated with this work, we would 

like to mention other novel aspects associated with our investigation that we believe are of interest to the 

computer vision research community. In particular we would like to mention the in-depth evaluation of 

the effects of image interpolation in the calculation of the standard LBP texture unit, which helped us to 

clarify several issues relating to the drop in classification that is characteristic for rotational invariant (RI) 

LBP forms. To further emphasise the link between classification accuracy and rotation invariance, in this 

paper we also provide comparative experimental results between texture classification schemes based on 

standard Gabor filtering and symmetrical (S) filters. Last but not least, a novel aspect associated with this 

work also reside in the detailed discussion of the experimental results that advance conclusions in regard 

to the process employed by the LBP and signal processing techniques in the process of sampling the 

texture in digital images.  

This paper is organised as follows. Section 2 presents the texture extraction techniques evaluated in this 

study. Section 3 details the experimental results, while in Section 4 the classification results are analysed 

and discussed. Section 5 concludes this paper. 

 



2. Methods 

2.1 Local Binary Patterns  (LBP) Texture Extraction 

The Local Binary Patterns (LBP) concept, as developed by Ojala et al (Ojala et al, 2002a), attempts to 

decompose the texture into small units where the texture features are defined by the distribution 

(histogram) of the LBP values calculated for each pixel in the image. The concept behind LBP is 

appealing since the LBP distributions are suitable to sample the textural properties in the homogenous 

image regions irrespective to their sizes. The LBP texture unit is calculated in a 3×3 square 

neighbourhood by applying a simple threshold operation with respect to the central pixel as illustrated in 

equation (1).  
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where T is the texture unit, gc is the grey level value of the central pixel, gP are the grey level values of the 

pixels adjacent to the central pixel in the 3×3 neighbourhood, P defines the number of pixels in the 3×3 

neighbourhood and function t(.) defines the threshold operation. For a 3×3 neighbourhood the value of P 

is 8. To encompass the spatial arrangement of the pixels in the 3×3 neighbourhood, the LBP value for the 

tested (central) pixel is calculated using the following relationship:  
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where t(gi - gc) is the value of the thresholding operation illustrated in equation (1). The LBP values 

calculated using equation (2) are in the range [0,255].  

      As the LBP values do not measure the greyscale variation, the LBP is commonly used in conjunction 

with a contrast measure C. In our implementation, the contrast measure C, as suggested by Ojala et al 

(Ojala et al, 2002a), is calculated as the normalized difference between the grey levels of the pixels with a 

value of 1 and the pixels with a value of 0 in the texture unit T (see equation 1). The distribution of the 

LBP/C values calculated for all pixels in the image represents the texture spectrum. The LBP/C 

distribution can be defined as a histogram of size 256 + b, where the first 256 bins are required by the 

distribution of the LBP values and the last b bins of the distribution are required to sample the quantized 



contrast measure. In practice, the contrast measure is sampled in 4, 8 or 16 bins to obtain a compact 

descriptor. Fig. 1 illustrates the LBP and contrast distributions for three differently textured images (top – 

oriented texture, middle – mildly oriented texture and bottom – isotropic texture). 
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Fig. 1. The LBP and contrast (quantization level 8) distributions calculated for thereof the textures 

(Ojala et al, 2002b) used in our experiments. 
 
 
2.2.  Rotational Invariant (RI) LBP Descriptors  

The LBP values calculated for each texture unit using equation (2) are sensitive to texture orientation. 

This is motivated by the fact that the standard LBP descriptor encompasses the spatial distribution of the 

pixels along with the distribution of the intensity values within a square 3×3 neighbourhood. While this 

property may be useful when this texture descriptor is included in the development of applications such as 

inspection of surfaces defined by oriented textures, it is a considerable drawback when this image 

descriptor is used for texture classification. To address this problem, Ojala et al (Ojala et al, 2002a) 



proposed to modify the LBP descriptor in order to achieve rotation invariance (RI). To remove the 

sensitivity to rotation, the texture descriptor has to be calculated within a circular neighbourhood and the 

texture should be evaluated in terms of uniformity. Since the pixels in the image are organised as a 

discrete matrix, the pixels situated within the circular neighbourhood are not positioned exactly on the 

image grid and their values are calculated by using bilinear interpolation.  To enforce the concept of 

uniformity in the calculation of the LBP values, Ojala et al (Ojala et al, 2002a) introduced the term 

“uniform patterns” that is defined in terms of the number of transitions between 0 and 1 in the LBP mask 

obtained after thresholding the pixels from the circular neighbourhood with the intensity value of the 

central pixel. In this way, they defined a pattern as uniform if the binary LBP pattern has a maximum of 

two transitions; otherwise the pattern is classed as non-uniform. For instance, if the LBP value is 

calculated in a circular 8 neighbourhood, the binary patterns 00000000, 00000001, 00000011, 

00001000,…, 11111111 are classed as uniform, while patterns such as 01100101, 10101000, 

01101101,…, 10101010  are classed as non-uniform (see Fig. 2). 

 

 

 
 

 
Fig. 2. LBP masks obtained after the application of the thresholding operation. The pixels that return the 

value 0 in equation (1) are marked in the diagram with a black disc while the pixels that generate a value 

1 are marked with a white disc. (Top row) Examples of uniform patterns (maximum of two transitions in 

the binary pattern). (Bottom row) Examples of non-uniform patterns. 
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Fig. 3. LBPri pattern sizes. (a) P=8, R=1. (b) P=16, R=2. (c) P=24, R=3. 

 

As indicated earlier, the idea behind uniformity concept is to group the non-uniform patterns in a 

distinct class while the values for uniform patterns are given by the total number of elements with a value 

1 in the binary LBP pattern (see equation 5). In the original implementation (Ojala et al, 2002a), the 

rotational invariant (RI) LPB descriptors are calculated for neighbourhoods with different sizes (see Fig. 

3) as follows: 
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where P is the number of pixels in the LBP mask, R is the radius of the mask, ri indicates that the LBP 

value is rotational invariant, Tr(gm,gn) defines the transition between pixels with indexes m and n and UP,R 

is the function that evaluates the uniformity of the binary LBP pattern.  

To improve its discriminative power, the LBPri value is complemented with the contrast measure C that 

is calculated as the variance of the pixels situated in the LBP mask (Ojala et al, 2002a).   

 

 



2.3. Multi-channel Texture Decomposition Using Gabor Filtering    

There has been a widely accepted consensus among vision researchers that filtering an image with a 

large number of oriented band pass filters such as Gabor is an optimal approach to analyse texture (Bovik 

et al, 1990; Porter and Canagarajah, 1997; Lahajnar and Kovacic, 2003; Ilea and Whelan, 2008). This is 

motivated by the fact that this approach extracts the texture features over the entire spectrum of 

frequencies by filtering the image with a bank of Gabor filters calculated for different scales and 

orientations. This operation performs multi-channel texture decomposition and this is usually achieved by 

filtering the input textured image with a dyadic two-dimensional (2D) Gabor filter bank that was initially 

suggested by Daugman (Daugman, 1988) and later applied to texture segmentation by Jain and 

Farrokhnia (Jain and Farrokhnia, 1991).  The 2D Gabor function that is used to implement the even-

symmetric 2D discrete filters can be written as:  
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where ,  and B is the bandwidth of the filter. In equation (6) the 

parameter σ is the scale of the Gabor filter, θ is the orientation, λ is the wavelength of the cosine function 

that is given in pixels and f0=1/λ is the frequency parameter that controls the number of cycles of the 

cosine function within the envelope of the 2D Gaussian (φ is the phase offset and it is usually set to zero 

to implement 2D even-symmetric filters). Based on the formulation illustrated in equation (6) it can be 

deduced that the Gabor filters are band pass filters where the parameters σ, θ, 1/λ determine the sub-band 

that is covered by the Gabor filter in the spatial-frequency domain. In practice, the parameters of the 

Gabor filters are chosen to optimise the trade-off between spectral selectivity (texture decomposition) and 

the size of the bank of filters. Typically, the central frequencies are selected to be one octave apart (i.e. 

log2(fi+1/fi) = 1) and for each central frequency a set of filters corresponding to four (00,450,900,1350) or 

six orientations (00,300,600,900,1200,1500) is constructed. To illustrate the spectral selectivity of the Gabor 

filters, in Fig. 4 a number of Gabor filters with different values for σ, θ and f0 parameters are illustrated.   
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Fig. 4. 2D Gabor filters for 300 and 1200 orientations. (Top row) scale σ =1.0, central frequency f0=1.5/2π. 

(Bottom row) Scale σ =2.0, central frequency f0=2.5/2π. 

 

2.4. Multi-channel Texture Decomposition Using Isotropic Gabor Filters    

The main disadvantage associated with approaches based on multi-channel texture decomposition using 

a large bank of Gabor filters is the large computational cost. Thus, to limit the number of orientations in 

the Gabor filter bank it would be advantageous if the filters would have isotropic characteristics (i.e. 

rotational invariant filters). Using this concept, Schmid (Schmid, 2001) developed a set of rotational 

invariant Gabor-like filters (in this work they are referred to as symmetrical (S)-Filters) that were applied 

to construct texture models for image retrieval. The S-Filters proposed in (Schmid, 2001) are constructed 

as follows, 

 

)
2

exp(cos),(),(
2

2222

,
σσ

πτ
στστ

yxyx
SyxS o

+
−













 +
+=                                          (8)  

 
where τ is the frequency parameter that controls the number of cycles of the cosine function within the 

Gaussian envelope, σ is the scale parameter and the term S0 is added to remove the DC component of the 



2D S-Filter. The parameters τ and σ can be adjusted to capture a particular sub-band in the spatial-

frequency domain as illustrated in Fig.  5. 

  
 

  
 

 
Fig. 5. 2D S-Filters constructed using the following (σ,τ) parameters: (a) (1,0). (b) (2,1). (c) (4,1) and (d) 

(4,2). 

 

3. Experiments and Results 

The aim of this section is to provide a comparative study between the performances in texture 

classification offered by the LBP texture descriptors and the standard signal processing texture analysis 

techniques based on Gabor filters and S-Filters. To evaluate the performance of the texture extraction 

techniques based on filtering the image with large banks of oriented filters, additional experiments were 

conducted using the LM and MR8 filtering approaches and the results are also reported in this paper for 

completeness. In particular we were interested in evaluating the influence of the image size and the 

texture rotation on the classification results. In order to perform these measurements, we have applied the 

LBP texture descriptors in both the standard and rotational invariant forms. The experimental results 

reported in this paper were conducted on four Outex databases (TC 00000, TC 00001, TC 00002, TC 

00010) (Ojala et al, 2002b) and on Brodatz (Brodatz, 1966) database. The Outex databases are formed by 

24 classes of standard textures as illustrated in Fig. 6 (canvas, carpet and tile). 



 

                
 

                
 

                
 

                
 

Fig. 6. Samples of the 24 textures contained in the Outex (Ojala et al, 2002b) databases. 

 

Database TC 00000 comprises of 480 texture images with a single orientation with an image size of 

128×128.  Database TC 00001 is formed by splitting the images that form the database TC 00000 in four 

(this results in 2112 texture images where the image size is 64×64). Database TC 00002 is obtained in a 

similar fashion by splitting the texture images of database TC 00001 into four parts (this results in 8832 

images where the image size is 32×32). The databases TC 00000, 00001 and 00002 were generated using 

a single texture orientation and they were included in this study to evaluate the robustness of the analysed 

texture extraction techniques to variations in image size. Database TC 00010 is generated by capturing 

the textures that form the database TC 00000 with nine rotation angles (00, 50, 100, 150, 300, 450, 600, 750, 

900) and is formed by 4320 images where the image size is 128×128 (for more details in regard to the 

construction of the Outex databases the reader can refer to (Ojala et al, 2002b)).  

The Brodatz database (Brodatz, 1966) used in our study consists of 36 texture images. This database is 

formed by near-isotropic textures captured with a single orientation and the original images were split in 

4 (database BD 00000), 16 (database BD 00001) and 64 sub-images (database BD 00002). Database BD 

00000 comprises 144 non-overlapped texture images (image size: 256×256), database BD 00001 consists 

of 576 non-overlapped texture images (image size: 128×128) and database BD 00002 comprises 2304 



non-overlapped texture images (image size: 64×64). Fig. 7 depicts the 36 classes of the Brodatz textures 

used in our experiments.   

 

 
 

Fig. 7. The 36 textures from the Brodatz (Brodatz, 1966) database used in our experiments. 

 

3.1. Classification Procedure 

In our experiments the similarity between the training and test datasets is evaluated using the SVM 

classification scheme (Chang and Lin, 2001). Since the texture analysis algorithms published in the vision 

literature employ different classification algorithms to evaluate the robustness of the texture descriptors, 

this fact renders the analysis with respect to classification accuracy extremely difficult. To circumvent 

this issue, we have adopted the SVM classification scheme since its implementation is standard and 

readily available (Chang and Lin, 2001) and the results reported in this paper can be easily benchmarked 

against the results obtained by other texture analysis algorithms. To avoid the computational problems 

associated with complex classification models (such as the optimisation of a large set of parameters), in 

our implementation we have used polynomial kernels to map the feature space. The first tests were 



conducted on texture databases formed by non-rotated texture images. In our experiments half of the 

images were used for training and the remaining half were used for testing.  

To evaluate the robustness to image rotation of the algorithms detailed in this paper, we have conducted 

a number of experiments on database TC 00010 that comprises texture images captured with 9 rotation 

angles. In order to sample the effect of image rotation we have adopted the approach suggested by Ojala 

et al (Ojala et al, 2002a) where the classifier was trained with 480 images captured with the standard 

orientation (angle 00) while the images with the remaining (rotated) orientations were used for testing. 

Training the classifier with a single orientation is the optimal strategy to assess the robustness of the 

evaluated techniques to image rotation since no bias in classification is introduced.  

 

 
 

Fig. 8. Training process. 

 

    The training process is illustrated in Fig. 8 and it can be noticed that the classifier is trained with 

feature vectors that define either the LBP/C distributions (size: 256+b, where 256 is the size of the LBP 

distribution and b is the quantisation level of the contrast measure) or by the distributions calculated from 

the responses obtained after filtering the texture images with the multi-channel filter banks (in our 

implementation we have normalized the intensity values of the filtered images in the range [0,255] and as 

a result the size of the feature vector is: 256×num_filters, where num_filters defines the number of filters 

in the filter bank).  



3.2. Classification Results for the LBP Technique 

In this section we evaluate the classification accuracy returned by the Local Binary Patterns (LBP) 

technique where the operators were used in both the standard and rotational invariant forms. In this study 

the standard LBP descriptor and the rotational invariant LBPri
8,1, LBPri

16,2, LBPri
24,3 texture descriptors are 

evaluated.  

 

Table 1. Experimental results for the LBP descriptors with respect to image size. 
Database Method Accuracy 

[%]  
LBP/C Bins = 4 100 
LBP/C Bins = 8 100 

LBP/C Bins = 16 97.91 
LBPri

8,1 92.50 
LBPri

16,2 87.91 
LBPri

24,3 86.25 

TC 00000 
(128×128) 

LBPri
MR 92.91 

LBP/C Bins = 4 98.48 
LBP/C Bins = 8 98.48 

LBP/C Bins = 16 98.86 
LBPri

8,1 91.85 
LBPri

16,2 90.24 
LBPri

24,3 91.38 

TC 00001 
(64×64) 

 

LBPri
MR 97.15 

LBP/C Bins = 4 92.32 
LBP/C Bins = 8 93.59 

LBP/C Bins = 16 94.47 
LBPri

8,1 77.89 
LBPri

16,2 73.05 
LBPri

24,3 67.50 

TC 00002 
(32×32) 

LBPri
MR 87.54 

LBP/C Bins = 4 95.83 
LBP/C Bins = 8 100 
LBP/C Bins =16 100 

LBPri
8,1 94.44 

LBPri
16,2 93.05 

LBPri
24,3 93.05 

BD_00000 
(256×256) 

LBPri
MR 95.83 

LBP/C Bins = 4 99.65 
LBP/C Bins = 8 99.65 

LBP/C Bins = 16 100 
LBPri

8,1 100 
LBPri

16,2 98.95 
LBPri

24,3 97.22 

BD_00001 
(128×128) 

LBPri
MR 99.65 

LBP/C Bins = 4 96.87 
LBP/C Bins = 8 96.87 

LBP/C Bins = 16 96.79 
LBPri

8,1 94.44 
LBPri

16,2 94.36 
LBPri

24,3 93.23 

BD_00002 
(64×64) 

LBPri
MR 95.75 

 
 



 

Table 2. Experimental results for the LBP descriptors with respect to texture rotation. 
Database Method Accuracy 

[%] 
LBP/C Bins = 4 63.69 
LBP/C Bins = 8 69.42 
LBP/C Bins = 16 71.30 

LBPri
8,1 84.66 

LBPri
16,2 87.50 

LBPri
24,3 85.23 

TC 00010 
(128×128) 

LBPri
MR 89.68 

 

 

As indicated in Section 3.1 these experiments were performed using four Outex databases (TC 00000, 

TC 00001, TC 00002, TC 00010) and three Brodatz databases (BD 00000, BD 00001 and BD 00002) and 

the classification results are illustrated in Tables 1 and 2 (in these tables the parameter bins indicates the 

quantization level for the contrast measure and  denotes that the rotational invariant LBP operator 

has been applied in the multi-resolution form – the construction of this texture descriptor will be 

explained later in this section). 

ri
MRLBP

The results illustrated in Tables 1 and 2 are quite interesting and require a more detailed analysis. For 

instance, it can be observed that the standard LBP/C operator provides excellent discrimination when the 

classifier is trained and tested on texture images defined by a single orientation, but its discriminative 

power is substantially diminished even when dealing with small texture rotations. Table 2 shows that the 

rotational invariant (RI) LBP operators are more robust to handle texture rotation. But it is useful to note 

that the discriminative power of these descriptors when applied to non-rotated textures is significantly 

lower than that of the standard LBP/C texture descriptor especially when applied to small images defined 

by oriented textures (database TC 00002). Thus, the question that immediately arises is what causes the 

drop in classification accuracy for rotational invariant descriptors when applied to non-rotated texture 

databases? To answer this question we need to revisit Section 2.2 where the calculation of these rotational 

invariant descriptors is presented. In our opinion, this drop in classification can be caused by two factors, 

either by the image interpolation that is applied to calculate the intensity values of the pixels in the 

circular neighbourhood that are not positioned exactly on the image grid or by the poor discriminative 

power offered by the “uniform” patterns (we recall that the non-uniform patterns are labelled with the 



same value P+1). To clarify the impact of the interpolation procedure on the discriminative power of the 

LBP descriptors, in this paper we propose an approach that implements a new LBP/C operator where the 

LBP value is calculated within the circular pattern (P=8, R=1) illustrated in Fig 3(a). The LBP values for 

the circularly symmetric texture unit are calculated using equation (2) and the new operator is referred to 

as LBP_C8. The classification results obtained when this new texture descriptor (LBP_C8) is employed 

are illustrated in Table 3.  

 

Table 3. Experimental results for the LBP_C8 texture descriptor. 
Database Method Accuracy 

[%] 
LBP_C8 Bins = 4 100 
LBP_C8 Bins = 8 100 

TC 00000 
(128×128) 

LBP_C8 Bins = 16 97.50 
LBP_C8 Bins = 4 99.05 
LBP_C8 Bins = 8 99.24 

TC 00001 
(64×64) 

 LBP_C8 Bins = 16 99.24 
LBP_C8 Bins = 4 93.63 
LBP_C8 Bins = 8 94.97 

TC 00002 
(32×32) 

LBP_C8 Bins = 16 94.99 
LBP_C8 Bins = 4 61.09 
LBP_C8 Bins = 8 68.02 

TC 00010 
(128×128) 

LBP_C8 Bins = 16 70.67 
LBP_C8 Bins = 4 97.22 
LBP_C8 Bins = 8 97.22 

BD_00000 
(256×256) 

LBP_C8 Bins = 16 98.61 
LBP_C8 Bins = 4 99.65 
LBP_C8 Bins = 8 99.65 

BD_00001 
(128×128) 

LBP_C8 Bins = 16 100 
LBP_C8 Bins = 4 96.70 
LBP_C8 Bins = 8 96.79 

BD_00002 
(64×64) 

LBP_C8 Bins = 16 96.61 
 

 

From the results outlined in Table 3 it can be concluded that image interpolation does not have a negative 

impact on the classification accuracy (in fact the classification results are even better than those obtained 

when the standard LBP/C descriptor was evaluated) and we can safely assume that the loss in 

discrimination associated with the rotational invariant LBP descriptors is caused by the relative weak 

discrimination offered by the “uniform” patterns in sampling the texture characteristics. This conclusion 

is also validated by the accurate classification results obtained when the RI LBP operators were applied to 

Brodatz databases (see Table 1) and these results are motivated by the fact that the Brodatz databases are 



constructed using images defined by isotropic textures that would favour the rotational invariance 

associated with the RI LBP texture descriptors.  

      To further analyse the performance of the RI LBP operators, the next tests were conducted to evaluate 

whether the inclusion of the RI LBP operators into a multi-resolution classification approach would 

produce better results. To achieve this, we have concatenated the distributions that have been obtained 

when the RI LBP operators are calculated for all pattern sizes depicted in Fig. 3 ((P=8, R=1), (P=16, R=2) 

and (P=24, R=3)). The multi-resolution operator is referred to as  and the classification results 

when this operator has been applied to Outex and Brodatz databases are depicted in Tables 1 and 2. The 

experimental results indicate that the performance of the new multi-resolution operator is higher than the 

results attained when the RI LBP operators have been applied to texture databases at each resolution. The 

improved performance of the multi-resolution RI LBP operator is especially noticeable when applied to 

databases TC 00001, TC 00002 and TC  00010. Based on these experimental results we conclude that the 

discriminative power of the distribution of the “uniform” patterns improves dramatically when they are 

jointly analysed at different resolutions.     

ri
MRLBP

 

 

3.3. Classification Results for the Multi-channel Gabor Filtering Technique 

In this section we evaluate the classification results achieved using the multi-channel texture 

decomposition technique detailed in Section 2.3. In our experiments we have filtered the input image with 

a small bank of filters with four (00, 450, 900, 1350) and six (00, 300, 600, 900, 1200, 1500) orientations. The 

central frequency parameter was also varied by setting it to the values 1.0/2π, 1.5/2π, 2.0/2π and 2.5/2π. 

Since the size of the texture images in databases TC 00001 and TC 00002 is relatively small, the standard 

deviation (scale) parameter was fixed to 1.0 to avoid the windowing errors caused by the convolution 

with large filters. The calculation of the Gabor filter bank using a small value of the scale parameter is 

also motivated by the fact that the LBP descriptors are calculated within a small neighbourhood and this 

will generate a fair scenario when their relative texture classification performances are evaluated. (It is 

important to note that in the implementation of large filter banks the values of the scale and the central 



frequency parameters are selected to obtain an octave spaced filter bank.) The experimental tests were 

conducted on Outex and Brodatz databases as before and the classification results are outlined in Tables 4 

and 5 (to limit the size of these tables the classification results for Brodatz databases are only reported for 

six orientation (6 angles) multi-channel texture decomposition).  

 

Table 4. Experimental results for the Gabor filtering (GF) technique with respect to image size. 
Database Method Accuracy 

[%] 
GF f0 = 1.0/2π, 4 angles 85.83 
GF f0 = 1.5/2π, 4 angles 92.08 
GF f0 = 2.0/2π, 4 angles 96.25 
GF f0 = 2.5/2π, 4 angles 97.50 
GF f0 = 1.0/2π, 6 angles 86.25 
GF f0 = 1.5/2π, 6 angles 92.91 
GF f0 = 2.0/2π, 6 angles 97.08 

TC 00000 
(128×128) 

GF f0 = 2.5/2π, 6 angles 98.33 
GF f0 = 1.0/2π, 4 angles 83.99 
GF f0 = 1.5/2π, 4 angles 90.62 
GF f0 = 2.0/2π, 4 angles 96.96 
GF f0 = 2.5/2π, 4 angles 98.20 
GF f0 = 1.0/2π, 6 angles 84.75 
GF f0 = 1.5/2π, 6 angles 91.47 
GF f0 = 2.0/2π, 6 angles 97.72 

TC 00001 
(64×64) 

 

GF f0 = 2.5/2π, 6 angles 98.95 
GF f0 = 1.0/2π, 4 angles 64.35 
GF f0 = 1.5/2π, 4 angles 69.54 
GF f0 = 2.0/2π, 4 angles 86.07 
GF f0 = 2.5/2π, 4 angles 87.95 
GF f0 = 1.0/2π, 6 angles 63.26 
GF f0 = 1.5/2π, 6 angles 71.73 
GF f0 = 2.0/2π, 6 angles 86.73 

TC 00002 
(32×32) 

GF f0 = 2.5/2π, 6 angles 90.76 
GF f0 = 1.0/2π, 6 angles 86.11 
GF f0 = 1.5/2π, 6 angles 91.66 
GF f0 = 2.0/2π, 6 angles 97.22 

BD 00000 
(256×256) 

GF f0 = 2.5/2π, 6 angles 100 
GF f0 = 1.0/2π, 6 angles 94.09 
GF f0 = 1.5/2π, 6 angles 95.83 
GF f0 = 2.0/2π, 6 angles 98.95 

BD 00001 
(128×128) 

GF f0 = 2.5/2π, 6 angles 99.65 
GF f0 = 1.0/2π, 6 angles 86.73 
GF f0 = 1.5/2π, 6 angles 93.58 
GF f0 = 2.0/2π, 6 angles 95.92 

BD 00002 
(64×64) 

GF f0 = 2.5/2π, 6 angles 96.61 
 
 
 
 
 
 
 
 
 



Table 5. Experimental results for the Gabor filtering technique with respect to texture rotation. 
Database Method Accuracy 

[%] 
GF f0 = 1.0/2π, 4 angles 79.01 
GF f0 = 1.5/2π, 4 angles 68.28 
GF f0 = 2.0/2π, 4 angles 64.03 
GF f0 = 2.5/2π, 4 angles 60.72 
GF f0 = 1.0/2π, 6 angles 79.14 
GF f0 = 1.5/2π, 6 angles 68.88 
GF f0 = 2.0/2π, 6 angles 64.50 

TC 00010 
(128×128) 

GF f0 = 2.5/2π, 6 angles 63.15 
 

 

The results depicted in Table 4 indicate that the best classification results are obtained when the texture 

features are extracted using filter banks with six orientations and the central frequency is set to large 

values. This observation is valid only for experiments carried out on databases that comprise non-rotated 

textures (TC 00000, TC 00001, TC 00002, BD 00000, BD 00001 and BD 00002). When the experiments 

were conducted using rotated textures (TC 00010) the best results are obtained when the central 

frequency parameter is set to low values. These results are surprising since we can notice a clear 

similarity with the results obtained when the LBP techniques were evaluated. In other words by lowering 

the value of the central frequency we simply filtered out the high frequency components from the texture 

spectrum and this is somewhat similar to the “uniformity” concept enforced in the calculation of the RI 

LBP distributions. Thus, the classification results show better performance in the presence of texture 

rotation. Nonetheless, when the value of the central frequency is increased, the Gabor filters approximate 

oriented operators and the direction of the texture plays a crucial role in the classification process. 

 

3.4. Classification Results for the S-Filtering Technique 

The S-Filters were introduced by Schmid (Schmid, 2001) to extract a set of rotational invariant texture 

features that can be used to model generic descriptors for image retrieval. The 2D S-Filters are 

constructed using equation (8) where the scale σ and frequency τ are the parameters that model the 

spectral sensitivity of these filters. In the original implementation (Schmid, 2001) the filter set has been 

constructed by varying the scale σ between 2 and 10 and τ between 0 and 4. In our implementation we 

have implemented a filter set using the following pairs for (σ, τ): (1,0), (2,1), (4,1), (6,2), (8,3), (10,4) and 

the experimental results are depicted in Table 6. 



Table 6. Experimental results for the S-Filtering technique. 
Database Method Accuracy 

[%] 

TC 00000 59.58 
TC 00001 66.19 
TC 00002 46.15 
TC 00010 68.61 
BD 00000 75.00 
BD 00001 74.30 
BD 00002 

S-Filtering 

66.69 
 

The results depicted in Table 6 indicate that the best results are obtained when this technique is applied to 

the database TC 00010 and Brodatz databases (this is motivated by the fact that the Brodatz textures have 

strong isotropic characteristics). In Table 6, it can be observed that the classification accuracy drops 

significantly when this texture analysis scheme is applied to small images (database TC 00002). We 

conclude that the texture features extracted by filtering the texture images with a bank of S-filters are 

suitable to discriminate isotropic textures, but are inefficient when applied to the classification of oriented 

textures, which is in line with the concept behind this texture analysis technique. 

 

3.5. Classification Results for the LM and MR8 Filter Banks  

      While the texture analysis techniques based on filtering the input images with Leung and Malik (LM) 

(Leung and Malik, 2001) and Maximum Response (MR8) filter banks (Varma and Zisserman, 2004) are 

standard signal processing approaches that sample the texture characteristics using multi-channel filter 

banks, in this section we evaluate their performance when applied to Outex and Brodatz databases. The 

LM is a multi-scale, multi-orientation filter bank that consists of 48 filters (36 oriented and 12 isotropic). 

From these 48 filters, 36 are calculated using the first and second derivative of the Gaussian for 3 scales 

(σx,σy) = {(1,3), (2,6), (4,12)}, 6 orientations and 2 phases (to implement odd and even-symmetric filters), 

8 isotropic filters are generated using the Laplacian of Gaussian (LoG) and the remaining 4 isotropic 

filters are calculated using the standard Gaussian. The MR8 filter bank is obtained by recording only the 

filter from the LM bank that generates the maximum response from all orientations for the symmetric and 

odd filters at each scale (for more details refer to Varma and Zisserman (Varma and Zisserman, 2002; 

Varma and Zisserman, 2004)). Thus, the MR8 filter bank is formed by 8 filters that implement a multi-

scale rotational invariant filter bank (in the original implementation detailed in (Varma and Zisserman, 



2004) only two isotropic filters were included in the construction of the MR8 filter bank, where the 

standard deviation for the Gaussian and LoG operators is set to 10 pixels). The experimental results when 

the LM and MR8 filter banks are applied to the Outex and Brodatz databases are depicted in Tables 7 and 

8.  

 

Table 7. Experimental results for the LM filter bank. 
Database Method Accuracy 

[%] 
TC 00000 81.66 
TC 00001 84.65 
TC 00002 72.96 
TC 00010 51.87 
BD 00000 86.11 
BD 00001 92.36 
BD 00002 

LM -
Filtering 

87.07 
 
 
 

Table 8.  Experimental results for the MR8 filter bank. 
Database Method Accuracy 

[%] 
TC 00000 70.41 
TC 00001 70.64 
TC 00002 56.90 
TC 00010 72.57 
BD 00000 91.66 
BD 00001 88.88 
BD 00002 

MR8 -
Filtering 

86.90 
 

The results depicted in Tables 7 and 8 indicate that sampling the texture properties using a large bank of 

filters is unjustified and this observation is supported both by our experimental results and the findings 

reported in Varma and Zisserman (Varma and Zisserman, 2003). Our studies show that the texture 

orientation is the dominant textural property and this observation is supported by the fact that optimal 

classification results are obtained when the texture features are calculated using approaches such as 

standard LBP and Gabor filtering (when the frequency parameter of the Gabor filter is set to large values) 

that are specifically designed to record the image orientation for each pixel in the image. In our 

experiments (see Tables 7 and 8), the texture analysis approach based on filtering the image data using 

MR8 filters outperformed the LM filter banks when applied to Brodatz databases (due to their isotropic 

characteristics) and to Outex TC 00010 that is constructed using rotated textures.  

 



4. Discussions on the Reported Results 

The experimental results depicted in Section 3 were carried out in order to evaluate the performance of 

the LBP techniques when compared to the performance offered by texture analysis techniques based on 

filtering the image with a set of directional (Gabor), isotropic (S-Filters) filters and filter banks 

constructed using a large number of oriented and isotropic filters such as LM and MR8. Based on this 

analysis, we can conclude that the multi-channel S-Filtering technique is not suitable for the classification 

of oriented textures, but it offers reasonable discrimination when applied to the classification of isotropic 

textures. Thus, this technique can be successfully applied to extract omni-directional texture models that 

can be used in the development of applications including image retrieval (Schmid, 2001). Better results 

are obtained by the texture analysis techniques based on LM and MR8 filter banks, but their use for 

texture classification is not justified since their performance proved to be lower than that offered by the 

LBP and Gabor texture analysis techniques.  

The most important finding resulting from this study is that although the LBP/C and the multi-channel 

Gabor filtering techniques approach texture analysis from a different perspective, they have some similar 

characteristics. For instance, by modelling the Gabor filter bank to favour the extraction of high 

frequencies from the input image we obtain a filter set that responds strongly to texture orientation, a 

property that is also shared by the standard LBP/C texture descriptor. Conversely, by modelling the 

Gabor filter set to favour the extraction of low frequencies, the filter set becomes omni-directional and 

this is similar to the uniformity concept that is enforced when the rotational invariant LBP texture 

descriptors are calculated. At this stage we can conclude that the classification accuracy offered by the 

LBP texture descriptors is marginally higher than the performance offered by the multi-channel Gabor 

texture analysis, but it is useful to note that in this study we have not optimized the spectral selectivity of 

the filter banks. Hence, we conclude that the performances in texture classification offered by the LBP/C 

and multi-channel Gabor filtering are comparable.  

Arising from these results, it would be useful to examine whether the LBP/C texture descriptors and 

multi-channel Gabor filtering technique complement each other. To answer this question we need to 

evaluate the classification accuracy for each texture in the database and to analyse if one technique clearly 



outperforms the other when classifying a particular texture. This analysis is illustrated in Table 9 where 

the distribution of the misclassified images for each class is depicted. From this table it can be observed 

that the classification errors for all investigated techniques are highest for texture classes 9, 15 and 17-21, 

a fact that further reinforces the main conclusion resulting from this study, namely the similarity between 

the texture analysis principles that are employed by the LBP and Gabor-based filtering methods in the 

process of sampling textural properties.  

 

Table 9. Distribution of misclassified textures for LBP and Gabor techniques described in Section 2 
(database TC00000) 

Method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
LBP/C 
Bins  4 

                        

LBP/C  
Bins 8 

                        

LBP/C 
Bins 16 

         2        3       

LBPri
8   1       1    1 3  1 2 1 4 1 1 2  

LBPri
16   1 1      2   1 1 3 3 1 2 5 2 4  3  

LBPri
24 1 1 2 1      5  1 2  3 3  2 1 2 3 1 3 2 

GF1.0/2π 
4 angles 

1 1        4     4 3 1 6 1 2 5 4  2 

GF1.5/2π 
4 angles 

1   1      3     2   2 1 2 1 5  1 

GF2.0/2π 
4 angles 

         2       1 2 2 2     

GF2.5/2π 
4 angles 

         2        3 1      

GF1.0/2π 
6 angles 

1 1        4     4 3 1 6 2 3 3 4  1 

GF1.5/2π 
6 angles 

1   1      2     2  1 2  2 2 3  1 

GF2.0/2π 
6 angles 

         1       1 2 2 1     

GF2.5/2π 
6 angles 

         1        3       

 

 

5. Conclusions 

 
The main goal of this investigation was to perform a comparative study where the performances in 

texture classification offered by the Local Binary Patterns (LBP) and multi-channel filtering techniques 

are analysed. In this study the effects of the variation in image size and texture rotation on the 

classification results have been evaluated. In this regard, we have conducted the experiments using four 

Outex databases defined by 24 texture classes and three Brodatz databases defined by 36 texture classes 



and the classification results indicate that the performances of the LBP technique and multi-channel 

Gabor filtering are comparable. Our experimental results strengthen the conclusion that orientation is an 

important characteristic of the texture and best results are achieved when this texture property is 

accurately sampled by the texture descriptors (this conclusion is also confirmed by the results reported in 

our recent papers where the discriminative power of two texture analysis techniques based on the 

evaluation of the local image orientation at different observation scales (Ilea et al, 2008; Ghita et al, 2008) 

was quantitatively measured when the analysed techniques were applied for texture classification tasks). 

Another important finding resulting from this investigation is the fact that although the concepts behind 

the LBP and multi-channel filtering techniques are different, we have demonstrated that their behaviour in 

modelling oriented and isotropic textures shares many similarities. This is motivated in part by the fact 

that both approaches analyse the texture at a micro-level by either performing the calculation of the 

texture descriptor in a small neighbourhood or by performing pixel-wise filtering while the texture 

spectrum is defined at a macro-level by the distribution of the calculated texture units.  
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