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Abstract

This paper is about the development of an expert system for automatic classification of granite tiles through computer
vision. We discuss issues and possible solutions related toimage acquisition, robustness against noise factors, extrac-
tion of visual features and classification, with particularfocus on the last two. In the experiments we compare the
performance of different visual features and classifiers over a set of 12 graniteclasses. The results show that classi-
fication based on colour and texture is highly effective and outperforms previous methods based on textural features
alone. As for the classifiers, Support Vector Machines show to be superior to the others, provided that the governing
parameters are tuned properly.
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1. Introduction

The natural stone industry has grown quite steadily
over the last three decades. The slight setback suffered
in 2008-2009 has been almost recovered in 2010, when
worldwide production of raw and finished products
amounted to approximately 50 million tons (Napoli,
2011). Within this sector granite accounts for about
60% of the overall production. The chief granite export-
ing countries, sorted by the share of export of raw and
finished products, are: China (≈53%), India (≈16%),
Brazil (≈8%), Italy (≈5%) and Spain (≈4%). In the
building industry granite has become increasingly pop-
ular, due to a combination of strength, beauty and rel-
atively affordable price. There are many commercial
types of granite, which differ both in colour and texture.
Traditionally granite qualities are designated through a
generic name which refers to the predominant colour
(e.g.: ‘Tobacco Brown’, ‘Zimbabwe Black’, ‘Emerald
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Pearl’, etc.). Such denominations, however, may fre-
quently change from one country to another. This prob-
lem has called for the definition of unified denomina-
tion criteria, partially solved by the European Standard
EN12440 (2009). Yet this standard is by no means use-
ful when we need to sort and grade granite products
on the base of their visual appearance. Indeed, be-
cause of their natural origin, the visual appearance of
granites with the same mineralogical content may dif-
fer significantly. As a consequence controversial situ-
ations between customers and suppliers may arise. It
happens that the customer may dismiss a batch of tiles
either because it is different from the sample that served
as basis for the purchase, or because there is signifi-
cant variation in the visual appearance within the batch.
To avoid such problems, stone manufacturing compa-
nies have so far adopted visual inspection procedures
which are mostly manual, carried out by skilled op-
erators. Such approaches have been considered satis-
factory for many years – though they are intrinsically
qualitative, non-repeatable, and strongly subjective. But
globalization has changed things quite a bit, calling for
complex processes of organizational and infrastructural
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change aiming at maintaing high product and service
standards. In an effort to survive – and even expand
– in a highly competitive and globalised market, gran-
ite companies are therefore concerned with the develop-
ment automatic systems to measure, compare and store
the visual appearance of granite slabs in order to grade,
sort, and retrieve them according to some similarity cri-
teria. Among the possible advantages that such systems
would provide we mention: 1) improvement in the qual-
ity control process through standard, objective and re-
peatable procedures; 2) reduction of sales returns and
related economical losses; 3) better product traceability
and warehouse management.

In this scenario the contribution of this paper is to
give some insight into the development of an expert sys-
tem for automatic grading of granite tiles. To this end
we consider different visual descriptors and classifiers
and evaluate their performance in granite grading tasks.
The remainder of the paper is organized as follows. Af-
ter a review of related literature (Sec. 2), we give a de-
scription of the materials used in our research (Sec. 3)
and of the methods to extract and classify visual fea-
tures (Sec. 4). In Sec. 5 we describe a classification
experiment to evaluate the performance of the proposed
approaches. The results are presented and discussed in
Sec. 6. Sec. 7 concludes the paper with some final
considerations.

2. Related research

Automatic classification of product into lots of simi-
lar visual appearance – a problem sometimes referred to
asgrading– has found interesting applications in many
industrial products, such aspaper(Turtinen et al., 2006;
Maldonado and Grãna, 2009),ceramic tiles(Boukou-
valas et al., 2000; Kukkonen et al., 2001; Jiaoyan et al.,
2004), leather (Hoang et al., 1997; Yeh and Perng,
2001),fabric (Bennamoun and Bodnarova, 2003; Sem-
nani and Sheikhzadeh, 2009; Liang et al., 2012) and
painted slates(Ghita et al., 2005).

As for applications to natural stone products, we no-
tice that an increasing number of approaches has been
presented in the last years, thus testifying a growing in-
terest in the field. On the whole we can divide the meth-
ods in two groups: those based on image processing and
those based on spectrophotometric data. The methods
of the first group can be further subdivided in two sub-
groups: those based on texture features alone and those
based on a combination of colour and texture.

Literature review shows that methods based on tex-
ture features alone are the majority. Dogan and Akay

(2010) recently proposed a system for automatic clas-
sification of marble slabs based on sum and difference
histograms and AdaBoost. The authors report high clas-
sification accuracy on an experiment based on four dif-
ferent marble classes. Topalova and Tzokev (2010)
presented a method for grading of surface tiles based
on gray-scale histograms reporting good accuracy on a
classification task involving four classes and five bright-
ness variations. Similar texture features were also used
in a work of Carrino et al. (2002) for automatic classi-
fication of a specific type of marble, the ‘Rosa Perlato
of Coreno’. Other texture descriptors have also been
succesfully used in the past. Kurmyshev et al. (2003)
described an application based on the coordinated clus-
ters representation (CCR) for quality control of polished
granite tiles of the type ‘Rosa Porriño’. Bianconi and
Ferńandez (2006) employed different Gabor filter banks
for granite classification. Classification of marble sur-
faces has been also approached with scale-space (Dis-
laire et al., 2004) and wavelets (Luis-Delgado et al.,
2003).

If compared with the previous sub-group, application
of combined colour and texture features for classifica-
tion of natural stone products has received less atten-
tion. Approaches are in fact quite few, and, to the best
of our knowledge, all based on the same idea: apply-
ing grey-scale texture descriptors to each colour channel
separately. In a recent work Ershad (2011) described
a method based on a morphological operator (Primi-
tive Pattern Units) applied to each colour channel sep-
arately to discriminate among four different classes of
natural stone. Likewise, Martı́nez-Alajaŕın et al. (2005)
used sum and difference histogram features extracted
from each colour band separately and neural networks
to classify marble slabs into three categories, according
to their quality. Gabor filtering on each colour band sep-
arately was proposed by Lepistö et al. (2005) for classi-
fication of four classes of granite-like rock images.

In the second group of methods the source of infor-
mation is represented by spectrophotometric data. The
approach proposed by López et al. (2010) belongs to
this group. The manuscript, however, neither details
which spectral features are used nor how they are ob-
tained, making it difficult to replicate the experiments.
A similar method is described in the work of Araújo
et al. (2010). Here the authors are concerned with
the identification of different granite varieties. To this
end they employ a contact spectrophotometer to capture
spectral data at 10 different randomly-chosen locations
from each granite specimen and use functional SVM for
classification. In our opinion a potential limit to these
methods might be the scarce capability of a spectropho-
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tometer – which is basically a point-by-point, not full
field instrument – to capture the local variation in ap-
pearance (i.e.: texture) typical of natural stones.

This brief review reveals that most of the approaches
described in literature are based on textural features
alone. This is somewhat surprising, since the appear-
ance of natural stone products – particularly that of
granite – strongly depends on both texture and colour. A
limited number of methods including colour do in fact
exist, but they are all based on the same idea, namely ex-
tracting texture features from each colour channel sepa-
rately. Based on these consideration, and starting from
recent theoretical and experimental advances in colour-
texture analysis, in the following sections we propose
and discuss some new ideas and solutions.

3. Materials

We considered, in this work, a group of 12 commer-
cial classes of granite. Each class is represented by four
tiles, so the overall lot is composed of 48 pieces (Fig.
1). The materials have been kindly provided byMon-
dial Marmi S.r.l., a stone manufacturing company based
in Perugia, Italy. This dataset is quite challenging, since
it contains granite classes that are very similar in ap-
pearance and difficult to distinguish even to a trained
eye (e.g.: ‘Acquamarina’ and ‘Azul Capixaba’; ‘Rosa
Porriño A’ and ‘Rosa Porrĩno B’)

Images of each tile have been captured through an ac-
quisition system composed of a dome illuminator (Mon-
ster Dome Light 18.25”), a commercial camera (Sam-
sung S850) and a base. The camera is fixed to the dome,
which is mounted on the base. The base permits to
mount the dome at different rotation angles, making it
possible to capture hardware-rotated images. Inside the
base there is a pocket into which tiles are placed for ac-
quisition. Further details and drawings about the imag-
ing apparatus are provided in (Fernández et al., 2011;
MondialMarmi, 2011). The acquisition process was
carried out in our lab at the Department of Industrial En-
gineering of the University of Perugia, Italy. Through-
out the imaging process the shutter speed, aperture size
and ISO value of the camera were set at 1/30s, 7.4 and
50, respectively, and maintained constant. In order to
discard distortion in the periphery of the acquired im-
ages, we ultimately retained a central area of 544× 544
pixels, which corresponds to a tile area of about 20× 20
cm2. All the images of the dataset can be freely down-
loaded from the internet (MondialMarmi, 2011).

4. Methods

As we mentioned in Sec. 2, since granite appear-
ance is mainly determined by colour and texture, it
seems reasonable to rely on these two properties for
grading and classification tasks. Whether texture and
colour should be treated separately or jointly has been
debated at length in literature (Drimbarean and Whelan,
2001; Mäenp̈aä and Pietik̈ainen, 2004), and several ap-
proaches have been proposed. To be useful in practical
applications, a method should provide high classifica-
tion accuracy along with low dimensionality and com-
putational cost. This reduces the number of approaches
that translate into practical applications and, at the same
time, puts the designer of the expert system into trouble
when it comes to choose the most suitable strategy. In a
recent survey Bianconi et al. (2011) evaluated an ample
set of colour texture descriptors for image classification
purposes. In their study the authors compare different
strategies to integrate texture and colour data, and set
into evidence a reduced group of descriptors which pro-
vide high classification accuracy along with low dimen-
sionality and computational cost. They make up a set of
six methods (Tab. 2) that can be considered ‘optimal’ in
the Pareto’s sense. These are the methods that we used
herein. In Sec. 4.1 we recall the basics of each colour
texture descriptor and refer the reader to the above cited
work for details and technicalities. Then, in Sec. 4.2, we
discuss five different classification strategies that can be
used to implement the expert system.

Before going into the methods, we would like to dis-
cuss some issues related to robustness against noise fac-
tors. These represent significant concerns in practical
applications and are mainly related to changes in il-
lumination and viewing conditions (i.e.: rotation and
scale). In this work we assume that noise sources like
changes in illumination and image scale can be removed
by keeping both illumination and camera/object dis-
tance constant throughout the acquisition process. Such
conditions can be easily obtained in a factory, for in-
stance through an acquisition system similar to the one
described in Sec. 3. In contrast, changes in rotation
are virtually impossible to eliminate or compensate for,
since granite texture in the tile can occur, in principle,
at any orientation. For this reason all the descriptors
presented here below are rotationally-invariant, as dis-
cussed and experimentally confirmed in a previous work
(Bianconi et al., 2011).

4.1. Colour texture descriptors

The methods presented from Sec. 4.1.1 to Sec. 4.1.4
are based on disjoint colour and texture analysis. This
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Table 1: The 12 granite classes used in the experiments

Acquamarina Azul Capixaba Azul Platino Bianco Cristal

Bianco Sardo Giallo Napoletano Giallo Ornamentale Giallo Santa Cecilia

Giallo Veneziano Rosa Beta Rosa Porriño (A) Rosa Porriño (B)

means that textural features are extracted from images
previously converted to grey-scale, while colour fea-
tures are computed separately. Textural and chromatic
features are concatenated into the same feature vec-
tor. These approaches are usually referred to asparal-
lel methods (Palm, 2004). Recent experiments (Bian-
coni et al., 2011) suggest that this strategy seems to
be the most promising to integrate textural and colour
data. This results seems to be supported by some recent
psychophysiological findings which indicate that colour
and texture are processed independently in the brain
(Cant et al., 2008; Cavina-Pratesi et al., 2010). The last
two methods (Secs. 4.1.5 and 4.1.6) are based on dif-
ferent strategies, which are usually referred to asintra-
channel analysis, where features are extracted from
each colour channel separately; andintra- and inter-
channelanalysis, where features are extracted both from
each colour channel separately and from couples of
colour channels jointly.

4.1.1. Co-occurrence matrices+ chromatic features
The use of co-occurrence matrices and chromatic

features has been originally proposed by Arvis et al.
(2004). The method is based on the eight co-occurrence
matrices corresponding to one-pixel displacements
along the following eight directions:{0◦,45◦, · · · ,315◦}.
The matrices are averaged for rotation invariance and
five statistical features are extracted from each matrix,

namely: contrast, correlation, energy, entropy and ho-
mogeneity. Each feature is normalized in the [0,1] inter-
val. Chromatic features are the mean and standard devi-
ation of the hue and saturation channels. Both channels
are normalized in the [0,1] interval. The method gener-
ates nine features; five monochrome and four chromatic
features.

4.1.2. Co-occurrence matrices+ percentiles
Combination of co-occurrence features and colour

percentiles has been proposed by Niskanen et al. (2001)
for applications in wood inspection. Gray-scale co-
occurrence features are computed as described in the
preceding section. Chromatic features are the first, sec-
ond and third quartile of each R, G and B channel (each
channel is normalized between 0 and 1). The method
produces 14 features; five textural features and nine
chromatic features.

4.1.3. Gabor features+ chromatic features
This approach employs Gabor filters to extract textu-

ral features from images previously converted to gray-
scale (Drimbarean and Whelan, 2001) . In the imple-
mentation adopted herein, we used a bank of filters
with the following parameters: number of frequencies
= 4, number of orientations= 6, maximum frequency
= 0.327, frequency ratio= half-octave, and smooth-
ing parametersη, γ = 0.5. These settings are based
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on the results presented in a previous work (Bianconi
and Ferńandez, 2007). Texture features are the mean
and standard deviation of the absolute value of each
transformed image. As a result we get 48 textural fea-
tures. Discrete Fourier transform (DFT) normalization,
which we apply to achieve invariance against rotation
(Lahajnar and Kovacic, 2003), reduces this number to
32. These features are then concatenated with the four
chromatic features computed as in Sec. 4.1.1. The di-
mension of the resulting feature vector is 36.

4.1.4. Local Binary Patterns+ percentiles

In the same way as co-occurrence matrices and Ga-
bor filters, one can employ other grey-scale texture de-
scriptors, such as LBP, to extract textural features. The
method presented in this section, described by Niska-
nen et al. (2001), indeed concatenates LBP features ex-
tracted from grey-scale images and colour percentiles
computed on each R, G and B channel. In our im-
plementation we used theLBPri

8,1 operator to obtain
rotationally-invariant features. These are concatenated
with colour percentiles, which are computed as in Sec.
4.1.2. The resulting feature vector contains 45 features:
36 monochrome rotationally-invariant features and nine
colour features.

4.1.5. Intra-channel Gabor features

The use of Gabor features extracted from each R, G
and B channel separately has been proposed by Paschos
(2001) and Lepisẗo et al. (2005). Using the same fil-
ter bank described in Sec. 4.1.3 the method generates
144 monochrome features. Rotationally-invariant fea-
tures are obtained through normalization, which reduces
the total number of features to 96.

4.1.6. Integrative co-occurrence matrices

Integrative co-occurrence matrices (Arvis et al.,
2004; Palm, 2004) are based on both intra- and inter-
channel features which are computed by extracting the
same co-occurrence features described in Sec. 4.1.1
from each channel separately and from the following
couples of colour channels jointly: (R,G), (R,B) and
(G,B). The method generates five features for each sin-
gle channel and each couple of colour channels giving a
total of 30 features.

4.2. Classifiers

The classification step involves the design/selection
of a suitable classifier and, depending on the chosen

classifier, the selection/tuning of one or more param-
eters. When designing expert systems this is a cru-
cial step, and the result is often a trade-off among var-
ious factors, such as: easiness of implementation, ac-
curacy, computational demand and robustness. Herein
we considered five well-established classifiers (Tab. 3),
namely: Nearest Neighbourhood (NN), Nearest Mean
Classifier (NMC), Näıve Bayes (NB), Linear classifier
and Support Vector Classifier (SVC). In the following
subsections we recall the basics of each approach and
briefly discuss the pros and cons.

4.2.1. Nearest Neighbour and Nearest Mean Classifier
The first two approaches are based on distance,

which, in our implementation, is the Euclidean (L2) in
both cases. An unknown pattern is assigned the label
of the nearest training pattern (NN) or that of the near-
est centroid (NMC1). The advantages of both methods
are that they are parameter-free, easy to implement and
computationally cheap. Potential disadvantages are sen-
sitivity to outliers in the case of NN, whereas, as for
NMC, centroids can be scarcely representative in pres-
ence of high intra-class variability and therefore mis-
classifications can arise.

4.2.2. Naı̈ve Bayes
The Näıve Bayes classifier derives directly from

Bayes’ theorem under the hypothesis that individual
features are statistically independent (Theodoridis and
Koutroumbas, 2006). In the training step a probabil-
ity density function is estimated for each class and each
feature. In this phase one can assume a predefined func-
tional form for the pdf – herein we assumed a normal
distribution – and therefore the step reduces to learn-
ing the parameters (mean and standard deviation in this
case) of such distribution for each class and feature. In
the classification step, given and unknown pattern, pos-
terior class probabilities resulting from each features are
multiplied together and the pattern is assigned the class
with the highest product. Despite the assumption of sta-
tistical independence, which rarely holds, the method
turns out to be quite effective in practice (Hand and Yu,
2001).

4.2.3. Linear classifier
The linear classifier, originally developed for binary

classification problems, seeks the linear function (hy-
perplane) that best separates the classes in the feature

1This method is also referred to as Minimum Distance Classifier
(Duda et al., 2001)
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Table 2: Colour texture descriptors used in the experiments.

Method Dimension Reference

Co-occurrence matrices+ chromatic features 9 (Arvis et al., 2004)
Co-occurrence matrices+ colour percentiles 14 (Niskanen et al., 2001)

Gabor features+ chromatic features 36 (Drimbarean and Whelan, 2001)
Local Binary Patterns+ percentiles 45 (Niskanen et al., 2001)

Intra-channel Gabor features 96 (Paschos, 2001)
Integrative Co-occurrence matrices 30 (Arvis et al., 2004; Palm, 2004)

space. Obviously the optimal solution (perfect separa-
tion between classes) exists only if the two classes are
linearly separable. Different strategies exist to find the
separating hyperplane. One is least squares error esti-
mation, which is the approach adopted here. In this case
the procedure determines the hyperplane that minimizes
the weighted classification error (i.e. number of mis-
classified patterns× distance to the hyperplane) (van der
Heijden et al., 2004). Other methods include perceptron
learning and Fisher’s linear discriminant (Duda et al.,
2001). As for extension to multi-class, we adopted the
one-against-all strategy, where there is one linear func-
tion per class which is trained to classify between the
samples of that class from the samples of all remaining
classes.

4.2.4. Support Vector Classifier
Support Vector Machines are considered highly ef-

fective classifiers, and are currently held in great esteem
in the pattern recognition community. The design of
a support vector classifier, however, is not straightfor-
ward and needs to be handled with care. The process
involves the choice of a kernel function – through which
patterns are mapped into a higher-dimensional space –
and of the related parameters (Schölkopf and Smola,
2002). According to Hsu et al. (2010) an RBF kernel
is a reasonable choice in most cases, particularly when
the number of features is not excessively large. Since
we have to deal with relatively few features (at most
96 – see Tab. 2), this choice seems appropriate for the
application studied herein. The parameters that govern
this kernel, namelyC andγ, however, are not known be-
forehand and need to be selected carefully. In Sec. 5.1
we propose a procedure for fast estimation of both.

5. Experiments

In the experimental part we estimated the accuracy of
the methods presented in Sec. 4 through a supervised
image classification task. We considered all the 30 pos-
sible combinations colour texture features/classifiers.

As a preliminary step, the images of the original
dataset (Fig. 1) have been subdivided into 16 non-
overlapping sub-images, resulting in a dataset of 64
samples per class. Estimation of accuracy is based on
stratified sampling: the whole dataset is randomly split
into two disjoint sub-sets, one for training and the other
for validation, with the constraint that the fraction of
samples used for training is the same for each class.
Each classifier is build on the training samples and its
accuracy is estimated on the test samples. This is the
percentage of images of the validation set which are
classified correctly. To get a stable estimate the pro-
cedure is averaged over 100 different subdivisions into
training and validation set.

We believe it is particularly interesting to evaluate the
sensitivity of the methods to the number of samples used
for training, since in practical applications one may have
only few samples to train the classier. To this end we re-
peated the experiments using three different proportions
between training samples and total number of samples,
namely 1/2, 1/4 and 1/8. These correspond to 32, 16 and
8 training samples per class, respectively.

5.1. Estimation of SVM parameters

As we mentioned in Sec. 4.2.4, SVM parameters
need to be estimated carefully, since the performance
of the classifier strongly depends on them. Hsu et al.
(2010) recommend a grid-search procedure where var-
ious pairs of (C,γ) are tried and the one with the best
cross-validation accuracy is selected. This method,
however, is computationally very demanding and there-
fore not recommendable for practical applications. In-
stead we propose a simplified procedure based on two
sequential steps: in the first step we estimateC and in
the secondγ. Estimation ofC is based on measuring
the dispersion of the input data and does not require
cross-validation. The basic idea is that the value ofC
should be large enough compared to the diameter of
the sphere containing the input data, as suggested by
Chapelle et al. (1999). This parameter that can be com-
puted easily from the training data. For the dataset con-
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Table 3: Classifiers used in the experiments.

Classifier Abbrv. Implementation Notes

Nearest Neighbour NN PRTools 4.1 L2 distance

Nearest Mean Classifier NMC PRTools 4.1 L2 distance

Linear LLS PRTools 4.1
One-against-all strategy
Least squares estimation

Näıve Bayes NB custom Gaussian pdf

Support Vector Classifier SVC STPRtool
One-against-all strategy

RBF kernel

sidered herein, the different colour texture descriptors
show similar dispersion (mean radius of the minimum
enclosing ball= 13,66± 2,74), therefore we considered
thatC = 100 would be a reasonable choice with all the
colour texture descriptors considered in the paper. In the
second step, with the value ofC fixed, an optimal value
for γ is searched over the set of predefined values sug-
gested by Hsu et al. (2010), namely [2−15

,2−13
, · · · ,23].

In this step cross-validation is performed by randomly
picking 50% of the patterns whole dataset. The pro-
cess is repeated 100 times and at the end we retained
the value ofγ that most frequently gave the best accu-
racy considering all the colour texture descriptors. The
result, in this case, isγ = 2−3.

5.2. Implementation, execution and reproducible re-
search

All the colour texture descriptors and classifiers pre-
sented in Sec. 4 have been coded in Matlab R© R14.
Nearest neighbour, nearest mean and linear classifier are
based on PRTools (van der Heijden et al., 2004). Sup-
port vector classifier is based on STPRtool (Franc and
Hlávac, 2004). For reproducible research purposes, data
and code required to replicate the experiments are avail-
able in Ref. GR-CLASS (2012)2.

6. Results and discussion

The results (Tab. 4) show that the methods consid-
ered in this paper provide high granite classification ac-
curacy, and therefore represent viable approaches for
granite grading tasks. The experiments indicate that in
this domain combination of colour and texture features
outperforms classification based on grey-scale texture
features alone (Fernández et al., 2011). This result is

2To access the page: user= granite, psw= classification

in agreement with current literature in the field (Drim-
barean and Whelan, 2001).

With respect to the visual descriptors, the results set
into evidence the good performance of co-occurrence
matrices, both in the disjoint colour and texture ver-
sion (co-occurrence matrices+ chromatic features) and
in the intra- + inter-channel version (integrative co-
occurrence matrices). Moreover, in both cases such
good results are obtained with quite few features (9 and
30, respectively).

Regarding the classifiers, we notice that SVC pro-
vides good results with almost all the colour texture de-
scriptors, even with few training samples. This result,
however, strongly depends on a preliminary tuning step
needed to adjust the kernel parametersC andγ. An-
other potential drawback of this classifier is that it is is
significantly slower that the others. The nearest neigh-
bour classifier also provides good accuracy, though sig-
nificantly lower than that obtainable with SVC. On the
other hand, NN is fast and parameter-free. This method
is therefore a good substitute when preliminary parame-
ter tuning is not possible. The other classifiers provide,
on average, lower accuracy.

A specific comment deserves the trend shown by LBP
+ chromatic features with the Naı̈ve Bayes classifier,
since this appears significantly lower and peculiarly dif-
ferent from that of the other methods. In our opinion
this behaviour is closely related to the intrinsic nature
of LBP, which produces a highly uneven feature vector
where some bins tend to have a prior probability much
higher than others (Bianconi and Fernández, 2011). As
a result the estimation of pdf which the classifier re-
quires may be unstable, especially when few training
samples are used.

7. Conclusions

In this paper we have presented some possible ap-
proaches to the development of an expert system for au-
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Table 4: Results of the classification experiment

Descriptor Classifier
NN NMC LLS NB SVC

Training samples/ total samples= 1/2
Cooc-m+ chromatic features 95,2 87,7 88,6 94,6 97,3
Cooc-m+ percentiles 93,2 82,9 88,9 87,3 96,3
Gabor+ chromatic features 88,1 65,1 90,3 75,3 95,5
LBP + percentiles 94,0 83,5 89,8 76,9 97,2
Intra-channel Gabor features 92,3 79,6 88,3 91,4 97,3
Integrative cooc-m 95,5 85,4 95,2 91,6 98,5

Training samples/ total samples= 1/4
Cooc-m+ chromatic features 93,4 87,9 87,8 94,2 96,3
Cooc-m+ percentiles 91,1 82,8 88,0 86,6 94,9
Gabor+ chromatic features 84,6 65,6 80,0 73,4 93,4
LBP + percentiles 92,3 83,5 87,3 51,7 96,1
Intra-channel Gabor features 89,7 79,9 84,7 90,6 96,0
Integrative cooc-m 93,8 85,6 93,6 91,1 97,1

Training samples/ total samples= 1/8
Cooc-m+ chromatic features 90,8 87,3 86,8 92,5 94,1
Cooc-m+ percentiles 88,4 81,8 86,8 84,5 92,1
Gabor+ chromatic features 79,1 65,7 78,2 69,0 89,1
LBP + percentiles 89,8 82,5 80,5 31,3 93,6
Intra-channel Gabor features 86,3 79,8 76,2 87,8 93,1
Integrative cooc-m 90,8 84,9 87,2 89,2 94,6

tomatic classification of granite tiles. Based on recent
results on colour texture analysis, we have proposed a
set of visual descriptors which provide good classifica-
tion accuracy with a limited number of features. We
have also evaluated the performance of five different
classifiers and discussed the pros and cons of each. All
the solutions presented in the paper – of which we pro-
vide a full-functional implementation in Matlab R©– are
easy to implement and computationally cheap.

The results show that good classification accuracy (>

90%) can be obtained with few features and limited
number of training samples. This result can be further
improved (> 94%) using a support vector classifier, pro-
vided that its parameters are tuned properly. To this end
we presented a quick and easy procedure to estimate
SVM parameter avoiding time-consuming procedures.

Throughout the paper we have assumed that the
imaging system works under invariable illumination and
scale conditions. We can safely assume that such con-
ditions can be easily obtained in practical implementa-
tions. We would like to emphasize, however, that the
first condition is particularly critical to the system. The
reader should be aware that classification accuracy may
drop drastically in presence of variable illumination.
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2003. Colour texture classification for quality control of polished
granite tiles. In: Proceedings of the Third IASTED International
Conference on Visualization, Imaging and Image Processing (VIIP
2003). Vol. II. ACTA Press, pp. 603–608.

Lahajnar, F., Kovacic, S., 2003. Rotation-invariant texture classifica-
tion. Pattern Recognition Letters 24 (9-10), 1151–1161.
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Maldonado, J., Grãna, M., 2009. Recycled paper visual indexing for
quality control. Expert Systems with Applications 36 (5), 8807–
8815.
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Franc, V., Hĺavac, V., 2004. Statistical Pattern Recognition Toolbox
for Matlab. User’s guide. Tech. rep., Czech Technical University,
Center for Machine Perception.

Yeh, C., Perng, D.-B., 2001. Establishing a demerit count refer-
ence standard for the classification and grading of leather hides.
The International Journal of Advanced Manufacturing Technology
18 (10), 731–738.

9


