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Abstract

In this work we present a new family of computationally simple texture des-

criptors, referred to as binary gradient contours (BGC). The BGC methodo-

logy relies on computing a set of eight binary gradients between pairs of pixels

all along a closed path around the central pixel of a 3 × 3 grayscale image

patch. We developed three different versions of BGC features, namely single-

loop, double-loop and triple-loop. To quantitatively assess the effectiveness

of the proposed approach we performed an ensemble of texture classification

experiments over ten different datasets. The obtained results make it appa-

rent that the single-loop version is the best performer of the BGC family.

Experiments also show that the single-loop BGC texture operator outper-

forms the well-known LBP. Statistical significance of the achieved accuracy

improvement has been demonstrated through the Wilcoxon signed rank test.
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1. Introduction

Texture analysis plays an important role in computer vision and pat-

tern recognition. Tumor detection in medical imaging for computer-aided

diagnosis, automated surface inspection for industrial quality control and te-

rrain classification through the analysis of remote sensed imagery are just

some of the applications in which textural information can be successfully

exploited. Texture analysis techniques have been recently extended to study

dynamic events such as recognition of facial expression [1] or monitoring of

paint drying process [2]. Texture descriptors are traditionally classified into

four categories: statistical, model-based, geometrical and signal processing

methods [3, 4]. Among these categories, statistical methods have become

very popular, mainly because they provide good accuracy at an affordable

computational cost. The rationale behind statistical texture description is

that texture can be represented through the joint distribution of pixel intensi-

ties in a local neighbourhood. Based on this assumption, a stationary texture

image (i.e., an image that contains a single type of texture) could be ideally

characterized by means of the probability distribution of the possible grays-

cale patterns. This probability can be estimated by a histogram that measu-

res the occurrence frequency of the different grayscale patterns throughout

the image. To compute such a histogram, the image is scanned by one-pixel

steps with a sliding window, and at each window position the bin corres-

ponding to the detected pattern is incremented by one unit. Although this

approach results attractive for its conceptual simplicity, a straightforward

application of the method is impractical, since the number of entries in the

histogram is overwhelmingly large even for small neighbourhoods. To cope
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with multidimensional histograms it is useful to partition the feature space

into a discrete vocabulary of local features [5]. It has been recently proposed

to reduce the dimension of the histogram through unsupervised clustering of

grayscale patterns into a dictionary of textons [6]. Reported results show that

this method achieves high success rates in texture classification experiments.

However, clustering has a number of drawbacks: dependency of the texton

dictionary upon the texture samples used to train the classifier, influence of

parameter tuning on classification accuracy, and large computational over-

head (especially when large neighbourhoods are considered). An alternate

approach to partition the feature space is through a closed-form mapping [7].

Mapping-based histogram reduction does not have the drawbacks of cluste-

ring, since these schemes define a universal vocabulary of textural features,

are parameter-free and compute fast. Several mappings have been proposed

by diverse research groups [8, 9, 10, 11, 12, 13, 14]. Despite all of these imple-

mentations share the same underlying principle, to the best of our knowledge

they have not been yet integrated into a general framework. In this paper

we present such a unifying framework. Our claim is that these apparently

diverging dimensionality reduction schemes can be interpreted as a mapping

from the set of grayscale patterns to a set of integer indexes. This mapping

induces a partition of the set of grayscale patterns into groups of equivalent

patterns. Dimensionality reduction is achieved by merging the occurrence

frequencies of equivalent patterns into a single histogram bin. We used this

mapping-based framework to describe a novel family of texture descriptors,

called binary gradient contours (BGC), which consider the binary gradient

of the grayscale values along the eight peripheral pixels of a 3 × 3 window.
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In this class of models a texture is described through the occurrence fre-

quency of the resulting binary 8-tuples. The effectiveness of BGC features

has been experimentally demonstrated through an ensemble of texture clas-

sification experiments. We have found that one out of the three proposed

BGC models is more efficient in discriminating texture than the well-known

LBP model.

The remaining of the paper is organized as follows. In Section 2 we pre-

sent a general framework for texture description based on pattern mapping.

Section 3 is devoted to describe the novel family of texture descriptors. The

purpose of Section 4 is threefold. The first is to compare the proposed featu-

res with the closely related local binary pattern (LBP) concept. The second

is to introduce some theoretical considerations to justify the efficiency of our

approach. The third is to comparatively analyze the characteristics of the

texture descriptors considered in this work. Experimental results are shown

in Section 5 and Section 6 summarizes the main conclusions that can be

drawn from our work.

2. Framework for texture description based on pattern mapping

To describe the proposed framework, we shall begin by defining the no-

tation to be used henceforth. Let I be a matrix of M rows and N columns

representing the raw pixel intensities of an image quantized to G gray-levels,

and Im,n ∈ {0, 1, . . . , G−1} the pixel intensity corresponding to the m-th row

and n-th column. We denote by Sm,n a square crop of 3× 3 pixels centered

at pixel (m,n) of image I:
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Sm,n =


Im−1,n−1 Im−1,n Im−1,n+1

Im,n−1 Im,n Im,n+1

Im+1,n−1 Im+1,n Im+1,n+1

 (1)

Without loss of generality we can rename the terms of the equation above

in order to remove the dependance on (m,n). Thus, let S be a matrix repre-

senting the pixel intensities of a generic square neighbourhood with support

3 × 3. Let Ic be the gray-level of the central pixel and Ij the gray-levels of

the peripheral pixels (j ∈ {0, 1, . . . , 7}), which are arranged as follows (see

Fig. 1(a)):

S =


I7 I6 I5

I0 Ic I4

I1 I2 I3

 (2)

Let us denote by M3×3,G the set of all the possible instances defined by

Eq. 2. A typical value for G is 28 (i.e., pixel intensity is quantized in 256

levels) since the depth of digitization of most commercial imaging devices

is 8 bits. It readily follows that in this case the number of different 3 × 3

grayscale patterns is given by:

#M3×3,256 = 272, (3)

where # stands for “cardinality of”. It emerges from Eq. 3 that the tex-

ture description through the joint distribution of pixel intensity over a 3× 3

neighbourhood involves a huge feature vector of roughly 4.7 × 1021 compo-

nents. Suppose that one intends to describe a texture image through the

occurrence frequency of 3× 3 grayscale patterns. Provided that the number
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of possible patterns is several orders of magnitude greater than the number

of image pixels, even for high resolution imagery, the vast majority of histo-

gram bins would remain empty. It is well-known that such extremely sparse,

ultra high dimensional histograms provide an unreliable estimation of the

underlying distribution and have negligible discriminant power in image des-

cription [15]. Moreover, the memory required to store one of such histograms

would largely exceed the capacity of the currently available computers. The

simplest way to reduce the joint histogram dimensionality would be by de-

creasing G. However, as the neighbourhood size increases, the number of

bins grows exponentially and soon far outweighs the number of datapoints

available in a single image with which to populate the histogram. To tackle

such ultra high dimensional feature space we propose to partition M3×3,G

into groups of patterns. Dimensionality reduction is straightforwardly attai-

ned by merging the histogram bins corresponding to patterns belonging to

the same group into a single bin. The partition can be adequately formalized

through a mapping that assigns each pattern a non-negative integer index

that uniquely identifies the group the pattern belongs to:

f : M3×3,G −→ N

S 7−→ k = f(S)
(4)

The function above establishes an equivalence relation inM3×3,G, denoted

by ∼:

S1 ∼ S2 ⇔ f(S1) = f(S2) ∀S1,S2 ∈M3×3,G. (5)

Let Q be the range of f [16]:
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Figure 1: (a) Spatial arrangement of a 3×3 grayscale pattern and schematic representation

of the texture models considered in this paper: (b)single-loop, (c) double-loop, and (d)

triple-loop versions of the binary gradient contour concept and (e) layout of the well-known

local binary pattern.

Q = f(M3×3,G), (6)

and q the number of different groups of patterns, i.e., the number of equiva-

lence classes:

q = #Q. (7)

The partition can be therefore expressed as:

M3×3,G =
⋃
k∈Q

Mf,k, (8)

where the family of subsets {Mf,k | k ∈ Q} is pairwise disjoint, and each

subset is defined by:

Mf,k = {S ∈M3×3,G | f(S) = k}. (9)

In the proposed framework, the mapping f makes it possible to represent a

texture image I by a q-dimensional vector hf (I) in which the k-th component

is given by:
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hf,k(I) =
#{(m,n) | f(Sm,n) = k}

(M − 2)× (N − 2)
. (10)

It is useful to note that in order for sub-image Sm,n to be fully enclosed

into I, the crop center cannot be located at the one pixel width periphery

of the image, and therefore Eq. 10 must satisfy that 2 ≤ m ≤ M − 1 and

2 ≤ n ≤ N − 1.

3. Binary Gradient Contours

We define the binary gradient contour of a 3 × 3 grayscale image patch

as the binary 8-tuple that results of a two-step procedure: 1) the gradient

between pairs of pixels is computed along a closed path around the central

pixel of S, and 2) the gradients are binarized using the value 0 as a thres-

hold. We propose to define the closed path in three different ways, namely:

single-loop, double-loop and triple-loop, as shown in Figs. 1(b)-(d), and the

corresponding versions of the binary gradient contours can accordingly be

expressed as:

g1 =



ξ(I7 − I0)

ξ(I6 − I7)

ξ(I5 − I6)

ξ(I4 − I5)

ξ(I3 − I4)

ξ(I2 − I3)

ξ(I1 − I2)

ξ(I0 − I1)



(11)

8



g23 =


ξ(I6 − I0)

ξ(I4 − I6)

ξ(I2 − I4)

ξ(I0 − I2)

 (12a)

g22 =


ξ(I7 − I1)

ξ(I5 − I7)

ξ(I3 − I5)

ξ(I1 − I3)

 (12b)

g2 =

 g23

g22

 (12c)

and

g3 =



ξ(I5 − I0)

ξ(I2 − I5)

ξ(I7 − I2)

ξ(I4 − I7)

ξ(I1 − I4)

ξ(I6 − I1)

ξ(I3 − I6)

ξ(I0 − I3)



(13)

where

ξ(x) =

1, if x ≥ 0

0, if x < 0

(14)
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It is useful to notice that the 8-tuples and 4-tuples above are actually

functions of S, but the explicit dependency on S has been dropped from

Eqs. 11-13 to alleviate notation.

It readily follows that the number of possible binary 8-tuples is 28 = 256.

However, the number of different instances of Eqs. 11, 12c and 13 is below

this upper limit since the components of these 8-tuples are not completely

independent. Indeed, there are intrinsic constraints for the components of

the gradient vectors caused by the fact that these gradients are computed

all along a closed path. Taking into account the inequality in the definition

of ξ(x) it is evident that the eight components of g1 cannot be 0’s simulta-

neously. Hence, the number of different single-loop binary gradient contours

reduces to 255. The same holds for g3 and therefore there are 255 different

triple-loop binary gradient contours. Similar constraints apply to the two

separate closed paths considered in the double-loop binary gradient contour

model (see Fig. 1(c)). For the sake of clarity it is convenient to split g2

into two halves: the first 4-tuple is formed by the four most significant bits

of g2 (Eq. 12a) and the second 4-tuple is formed by the four least signifi-

cant bits (Eq. 12b), which are referred to as g23 and g22, respectively. It

follows that the four components of these 4-tuples cannot be 0’s simultaneo-

usly. Hence the resulting number of different double-loop binary gradient

contours is (24 − 1)2 = 225.

In the proposed approach all those grayscale patterns which are mapped

to the same binary gradient contour are considered to be “equivalent”. We

hypothesize that texture can be conveniently described by the histogram that

quantifies the occurrence of equivalent 3×3 patterns. One can easily define
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the mappings corresponding to these equivalence relationships by properly

particularizing Eq. 4:

BGC13×3(S) = wT
8 g1 − 1, (15)

BGC23×3(S) = 15wT
4 g23 + wT

4 g22 − 16 (16)

and

BGC33×3(S) = wT
8 g3 − 1, (17)

where the superscript T stands for “the transpose of”, and wj denotes a

vector of weighting factors defined by:

wT
j =

[
2j−1 2j−2 · · · 21 20

]
(18)

Notice that the weighting vector is chosen arbitrarily. A different sorting

of its components would simply result in a different coding of the binary

gradient contours. One can observe from Eqs. 15-17 that the different BGC

mappings return an integer index between 0 and q − 1. These indexes are

used to label the histogram bins corresponding to each subset of equivalent

patterns.

We used matricial notation to define the mappings in a compact form, but

Eqs. 15-17 can be rewritten in an extended, algorithmic fashion, as shown in

Table 1.
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Table 1: Particularization of Eq. 4 for the considered texture models.

BGC13×3(S) =
7∑

n=0

ξ(In − I(n+1) mod 8)× 2n − 1

BGC23×3(S) = 15×
3∑

n=0

ξ(I2n − I2(n+1) mod 8)× 2n +

3∑
n=0

ξ(I2n+1 − I(2n+3) mod 8)× 2n − 16

BGC33×3(S) =

7∑
n=0

ξ(I3n mod 8 − I3(n+1) mod 8)× 2n − 1

LBP3×3(S) =
7∑

n=0

ξ(In − Ic)× 2n

4. Discussion

This section is devoted to discuss some important points of the proposed

family of texture descriptors. We shall perform a comparative analysis of the

three different versions of BGC features proposed in this paper. In addition

we shall also study the differences and similarities between LBP and BGC

models.

4.1. Relationship with LBP

The LBP model is a well-known, widely used approach to texture descrip-

tion. As a consequence of the large attention received by the LBP methodo-

logy from the texture research community, a vast body of literature reporting

on different applications of LBP features is currently available [17]. Such a

success relies on three major reasons: 1) LBP model is conceptually simple,

2) LBP method is not too demanding from a computational point of view,

being well suited for real-time processing, and 3) LBP features achieve high

texture discrimination accuracy. Detailed descriptions of the LBP model

can be found elsewhere, for instance in [18]. The LBP3×3 texture operator

is usually defined through the concept of local thresholding: the grayscale

values of the periphery of a 3× 3 window are converted into a set of binary
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values using the grayscale value of the central pixel as a threshold. The LBP

assigns each image pixel a code which is commonly defined by the formula

shown in Table 1.

Herein we propose to regard the LBP model from a different perspec-

tive. Indeed the LBP can be interpreted as a mapping from the grayscale

pattern space to the 8-tuple binary space, and therefore this texture model

perfectly fits into the general framework described in Sec. 2. In order to

better highlight the adequacy of the mapping-based framework to describe

the LBP model, it is convenient to reformulate the LBP using the notation

introduced in Sec. 2. To this end we define the following 8-tuple:

gY =



ξ(I7 − Ic)

ξ(I6 − Ic)

ξ(I5 − Ic)

ξ(I4 − Ic)

ξ(I3 − Ic)

ξ(I2 − Ic)

ξ(I1 − Ic)

ξ(I0 − Ic)



(19)

It should be noticed that the dependency on S has been removed for

the sake of simplicity, following an analogous approach to that of Eqs. 11-13.

The equation above represents the eight binary gradients at the central pixel,

calculated along the orientations determined by the eight neighbouring pixels

and binarized using the value 0 as a threshold. There are 28 = 256 different

instances of Eq. 19, since in this case intensity gradients are not computed

along a closed path and therefore any component of the 8-tuple can take the
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values 0 and 1, irrespective of the values of the other components.

In the LBP texture model the grayscale patterns that are assigned the

same 8-tuple defined in Eq. 19 belong to the same group of equivalent pat-

terns. Texture is then represented through a 256 bin histogram which quan-

tifies the occurrence frequency of the different groups of equivalent patterns.

Each group of patterns can be codified for labeling purposes using the pre-

viously defined matricial notation:

LBP3×3(S) = wT
8 gY (20)

Notice that in contrast to Eqs. 15-17, in this case it is not necessary to

include a subtractive term into the formula since the escalar product of wT
8

and gY can take the value 0.

4.2. Theoretical efficiency

The question at this point is: provided that LBP features are very effec-

tive in discriminating textures, why should we use the closely related BGC

features? We argue that the a priori advantage of using BGC rather than

LBP features can be theoretically justified through considerations on infor-

mation efficiency. The sets of equivalence classes used to describe texture can

be regarded to as alphabets of symbols, in analogy with a discrete noiseless

channel [19]. We observe that the dimension of the feature space represents a

theoretical limit to the amount of information that can be conveyed through

a texture model. It is well-known that the highest efficiency attainable by

an alphabet occurs when its symbols are equally likely, that is to say when

the entropy of the histogram representing the probability distribution of each
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(a)

(b)

(c)

Figure 2: A priory probabilities Pf (k) of the equivalence classes corresponding to the

following mappings: (a) BGC13×3 and BGC33×3 (b) BGC23×3, and (c) LBP3×3. The

histograms were computed for G = 12.
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symbol is maximum [19]. Therefore we define the efficiency ef of a texture

model in the following way:

ef =

q−1∑
k=0

Pf (k) log2 Pf (k)

log2 q
, (21)

where Pf (k) is the a priori probability of the k-th equivalence class of the

texture model defined by mapping f .

The numerator of Eq. 21 represents the actual entropy (i.e. the amount of

information) of the alphabet, and the denominator the maximum attainable

entropy (under the assumption of equiprobable symbols). We conjecture that

the effectiveness of a texture description method is related to its efficiency.

The dimensionality of the considered texture models are listed in Table 2 as

well as the maximum attainable entropy, which would correspond to a flat

histogram.

In order to estimate the actual entropy of the considered models, we have

empirically determined Pf (k) by calculating the proportion of 3×3 grayscale

patterns that belong to each equivalence class, assuming that all the possible

3 × 3 grayscale patterns are equally likely. To this end, we have computer

generated all the possible 3×3 grayscale patterns, then we have mapped each

pattern to its corresponding code through Eqs. 15-17 and 20, and finally we

have divided the number of patterns belonging to each equivalence class by

the total number of patterns (G9):

Pf (k) =
#Mf,k

G9
(22)

The a priori probabilities of the equivalence classes defined through BGC
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Figure 3: Dependency of the theoretical efficiency of the considered texture models with

the number of gray-levels.

and LBP mappings are shown in Fig. 2. Notice that the plots correspon-

ding to BGC13×3 and BGC33×3 models are identical. This coincidence will

be explained in Sect. 4.3. Efficiency was computed by applying Eq. 21 to

these a priori probabilities. We estimated Pf (k) only for moderate values of

G (number of quantization levels), since as G increases, the number of pos-

sible 3 × 3 grayscale patterns grows exponentially and computing becomes

time consuming. Anyway, the considered range of G seems sufficient, since

efficiency converges for G > 7, as shown in Fig. 3.

4.3. Comparative analysis

Although conceptually identical, the three members of the proposed BGC

family of texture features exhibit some differences which are worthy of com-

ment. Besides, it is fruitful to analyze the likenesses and divergences between
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Table 2: Summary of characteristics of the considered texture models: dimensionality of

the feature space (q), maximum attainable entropy expressed in bits (log2 q), theoretical

efficiency (ef ) computed for G = 12 quantization levels, separation between pixels (∆),

and gradient orientations (θ).

Model q log2 q ef ∆ θ

BGC13×3 255 7.9944 0.8996 1 0,±π
2
, π

BGC23×3 225 7.8138 0.8983
√

2, 2 0,±π
4
,±π

2
,± 3π

4
, π

BGC33×3 255 7.9944 0.8996
√

5 ±arctan 1
2
, π ± arctan 1

2
,±arctan 2, π ± arctan 2

LBP3×3 256 8 0.8533 1,
√

2 0,±π
4
,±π

2
,± 3π

4
, π

BGC and LBP texture descriptors.

An important property of both BGC and LBP models is intensity inva-

riance. Indeed, these descriptors are insensitive with respect to monotonic

transforms of the grayscale values of image pixels, as one can readily ascertain

from definitions.

All the considered models are based on binary 8-tuples. However, the

corresponding feature spaces have different dimension. The LBP3×3 histo-

gram has 28 = 256 bins, but the BGC histograms do not reach this upper

limit since the components of the 8-tuples are subject to intrinsic constraints

discussed in Sec. 3. The dimensions of these feature spaces are summarized

in Table 2. The fact that the models have different dimensions determines

that the maximum attainable entropies are also different.

Some interesting remarks can be made based on the analysis of theore-

tical efficiency performed in Sec. 4.2. First, it clearly emerges from Fig. 2

that the a priori probability of the equivalence classes defined through the

corresponding mappings are rather different. The LBP3×3 model exhibits

two conspicuous peaks located at both extremes of the histogram, while in
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the BGC histograms the occurrence frequencies are more evenly distribu-

ted. Concretely, 23.14% of the possible grayscale 3× 3 patterns concentrate

on just two of the subsets in which the set M3×3,12 is partitioned through

the LBP3×3 mapping. The remaining 76.86% patterns distribute in turn th-

roughout the other 254 subsets of patterns. Conversely, the BGC models

produce a more balanced partition ofM3×3,12 since in these cases the largest

subset contains only 2.57% of the possible grayscale patterns. Second, it is

important to realize that the a priori probabilities of the equivalence clas-

ses induced by BGC13×3 and BGC33×3 models are exactly the same. This

is motivated, on the one hand, by the fact that both binary gradients are

computed all along a unique closed path instead of two separate closed paths

as in BGC23×3 model (see Fig. 1), and on the other hand, by the hypothesis

that pixel intensities are statistically independent. And third, one can con-

clude from Fig. 3 that BGC mappings convey a higher amount of textural

information than LBP3×3.

The schematic representation depicted in Fig. 1 makes it apparent that

gradient scale and orientation vary from one model to another. Thus, the

sampling interval ∆ is unique in BGC13×3 and BGC33×3 operators (see Ta-

ble 2) while grayscale pixel values are pairwise compared at two different

scales in BGC23×3 and LBP3×3 operators. With regard to orientation, gra-

dients are computed at four different angles in the BGC13×3 model while eight

different angles are considered in the other models. As a consequence, the

BGC13×3 model encompasses only four types of pairwise pixel interactions,

namely the one-pixel step gradient at four different orientation, whereas the

rest of the models incorporate a wider variety of pairwise pixel interactions.
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As a final remark it should be pointed out that the LBP3×3 operator ta-

kes into account all the pixels of the 3× 3 neighbourhood, while the BGC

models only take into consideration the eight peripheral pixels. Although it

could seem somewhat abnormal to discard the central pixel, similar approa-

ches to texture description have been previously reported. The motivation

to leave the central pixel out relies on the fact that textures can often be

considered realizations of a Markov random field, and in this framework, the

probability of the central pixel depends only on its neighbourhood [20]. In

the “neighbourhood classifier” [6] texture is modeled through the occurrence

frequency of the textons of a dictionary. Textons are the resulting centroids

of aggregating and clustering source image patches. These image patches are

formed by the raw pixel intensities of a square neighbourhood in which the

central pixel is left out, analogously to the BGC model. Another texture mo-

del that excludes the central pixel is the “texture co-occurrence spectrum”

[21], in which four oriented masks at 0, 45, 90 and 135 degrees around each

pixel are used to extract textural information in terms of the occurrence of

4-conjoint pixel values for a given direction. Rank coding was used to reduce

the dimensionality of the features.

5. Experimental results

In order to assess the validity of the proposed approach we performed a

set of texture classification experiments using ten different datasets. Nine of

them are routinely used by the texture classification research community, in

part because these datasets are available in the Internet. The benchmark is

composed of the following datasets: four test suites from the OuTeX data-
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Table 3: Properties of the datasets used in the experiments.

Database Classes Samples Sample resolution Format Predefined

per class (pixels) train/test sets?

OuTeX TC 00000 24 20 128× 128 grayscale Yes

OuTeX TC 00001 24 88 64× 64 grayscale Yes

OuTeX TC 00002 24 368 32× 32 grayscale Yes

OuTeX TC 00013 68 20 128× 128 Colour No

Brodatz 13 16 256× 256 Colour No

KTH-TIPS 10 4 100× 100 grayscale No

KTH-TIPS2 44 4 100× 100 grayscale No

VisTex 167 4 256× 256 Colour No

Jerry Wu 39 4 256× 256 grayscale No

Mondial Marmi 12 4 544× 544 Colour No

base, namely TC 00000, TC 00001, TC 00002 and TC 00013 [22]; a set of

images generated from the popular Brodatz album, which can be downloa-

ded from the volume “Textures” of the USC-SIPI image database [23]; the

set of images from the KTH-TIPS and KTH-TIPS2 databases [24] with the

following settings: scale number = 5, object pose = frontal and illumination

direction = frontal; the “Reference Textures” of the VisTex database [25];

and a set of images from the Jerry Wu database [26] with the following set-

tings: rotation = 0, slant = 45 and tilt = 0. The tenth dataset, referred

to as Mondial Marmi, is composed of images of polished granite surfaces.

As one can readily ascertain from Fig. 4, some of the granite classes have

very similar visual properties. This dataset has been created by the authors

and is thoroughly documented in a previous work [27]. Table 3 summarizes

the format and structure details of these ten datasets. In all cases the tex-

ture samples have been generated by partitioning the original images into

non-overlapping subimages. Colour images have been converted to grayscale
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Figure 4: Granite images of the Mondial Marmi dataset. Each column corresponds to a

different texture class.

format by means of Matlab’s rgb2gray function.

The classification experiments were based on the nearest neighbour rule

[28] with the L1 norm, also called Manhattan distance [29]. It is reasonable

to expect that efficient classification algorithms, such as AdaBoost, self or-

ganizing maps, support vector machines, etc., may yield increased accuracy.

The choice of the simple 1-NN classifier is intended to highlight the discri-

minant power of the texture descriptors rather than to maximize the success

rate. The generalization error was estimated through split-half validation

[30], i.e., each dataset was randomly divided into two disjoint subsets of the

same cardinality, one used for training and the other for testing. We adopted

a stratified sampling scheme [31], so that the proportion of samples of each

class in the training set is maintained the same as in the overall dataset to

avoid class biasing in the classification process. The success rate, i.e., the

percentage of correctly classified patterns of the test set, is calculated for 100

different random partitions into training and validation set in order to have

a stable estimation of the generalization error.
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Table 4: Experimental success rate (mean ± standard deviation): percentage of samples

correctly classified averaged over 100 trials.

Database BGC13×3 BGC23×3 BGC33×3 LBP3×3

OuTeX TC 00000 99.80 ± 0.32 98.52 ± 0.67 98.83 ± 0.64 99.68 ± 0.40

OuTeX TC 00001 98.12 ± 0.37 95.59 ± 0.43 96.33 ± 0.47 98.44 ± 0.28

OuTeX TC 00002 88.52 ± 0.34 81.04 ± 0.46 80.63 ± 0.41 86.24 ± 0.42

OuTeX TC 00013 79.75 ± 0.97 76.34 ± 1.17 75.94 ± 1.00 78.32 ± 0.88

Brodatz 100.00 ± 0.00 98.00 ± 1.31 99.85 ± 0.35 100.00 ± 0.00

KTH-TIPS 100.00 ± 0.00 99.65 ± 1.28 99.45 ± 1.57 100.00 ± 0.00

KTH-TIPS2 83.48 ± 2.38 74.48 ± 2.92 78.11 ± 2.85 82.26 ± 2.73

VisTex 79.92 ± 2.12 73.86 ± 2.39 74.33 ± 2.33 77.99 ± 2.33

Jerry Wu 97.44 ± 1.34 95.35 ± 2.23 97.97 ± 1.26 97.41 ± 1.42

Mondial Marmi 90.50 ± 4.89 87.42 ± 6.04 89.38 ± 5.11 87.50 ± 5.95

For comparison purposes we performed the classification experiments

using BGC13×3, BGC23×3, BGC33×3 and LBP3×3 texture features. The ob-

tained classification accuracies are gathered in Table 4. One can readily

observe that there is a considerable spread in models performance. In or-

der to determine whether or not the differences on accuracy are significant

it is usual to perform statistical hypothesis testing [32]. We performed the

Wilcoxon signed rank test [33] on all the pairwise combinations of the four

texture models considered in this work. The same set of six tests was repea-

ted 10 times, one for each dataset. The results on statistical significance have

been collected in a 4 × 4 matrix (see Table 5), where the value in the i-th

row and j-th column represents the number of datasets for which the mean

accuracy achieved by the i-th model is significantly higher than the mean

accuracy achieved by the j-th model. The sum of a non-diagonal element

and its symmetric with respect to the main diagonal is less than or equal to

the number of datasets employed (10 in our experiments). Strict inequality
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Table 5: Results of the Wilcoxon signed rank test (α = 5%). Matrix elements denote

the number of datasets for which the model placed in the corresponding row achieves a

significantly higher accuracy than the model placed in the corresponding column.

BGC13×3 BGC23×3 BGC33×3 LBP3×3

BGC13×3 - 10 9 6

BGC23×3 0 - 2 0

BGC33×3 1 7 - 2

LBP3×3 1 9 8 -

holds whenever the differences between a pair of models are not significant

for at least one dataset.

With regard to the BGC features, it emerges from Tables 4 and 5 that the

BGC13×3 model is clearly the best performer of the novel family of texture

descriptors. The second place of the BGC ranking pertains to the BGC33×3

model. It is worth mentioning that BGC33×3 model is markedly less accu-

rate than BGC13×3 model although both models have the same theoretical

efficiency (see Sec. 4.2 and Fig. 3). The most likely explanation for this

contradiction between experimental results and theoretical considerations is

that in real textures pixel intensities are correlated to some extent. Hence

the basic hypothesis on which the theoretical efficiency analysis is based,

namely that pixel intensities are statistically independent, is not completely

valid. The double-loop version is the worst performer. To explain its lower

discriminative power it is important to note that in the BGC23×3 model the

binary 8-tuple is formed by concatenating two independent sets of four bi-

nary gradients (see Eq. 12c and Fig. 1(c)). As a consequence the BGC23×3

model can only encode a four-dimensional joint distribution of pixel intensity,
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while the BGC13×3 and BGC33×3 models encode an eight-dimensional joint

distribution.

With regard to the comparison between BGC13×3 and LBP3×3 features,

in seven out of the 10 datasets we can confidently (α = 5%) reject the null

hypothesis that the means of the two success rate distributions are identical,

whereas in the other three datasets no significant differences arise between

both texture models. It also emerges that in six out of the seven datasets

in which a significant difference is observed, the BGC13×3 outperforms the

LBP3×3. The contrary occurs with one dataset. In short, the score achieved

by the BGC13×3 texture descriptor in this comparative assessment against

the LBP3×3 model is: six wins, three ties and one loss. It should be noted

that, on the one hand, in two out of the three ties (Brodatz and KTH-TIPS

datasets) perfect classification was achieved by both models, and on the other

hand, the accuracy improvement provided by the LBP3×3 in the only case

when the BGC3×3 model was defeated (dataset OuTeX TC 00001) is fairly

slim.

6. Conclusions

In this work we presented a conceptually simple and computationally

efficient family of new texture descriptors. Three different methods have been

proposed, namely single-loop, double-loop and triple-loop binary gradient

contours, which are based on pairwise comparisons of pixel intensities all

along the periphery of a 3×3 window. These models have been comparatively

analyzed from a theoretical standpoint. A texture classification experiment

conducted over 10 different datasets made it apparent that all the BGC
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methods have a high texture discrimination capability. We found that the

single-loop binary gradient contour model, referred to as BGC13×3, is the

best performer of the BGC family. Comparison with the well-known LBP3×3

texture model showed that BGC13×3 works better in most cases.
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