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Abstract It is well-known that local binary pattern
(LBP) histograms of real textures exhibit a markedly
uneven distribution, which is dominated by the so-called
uniform patterns. The widely accepted interpretation of
this phenomenon is that uniform patterns correspond to
texture microfeatures, such as edges, corners, and spots.
In this paper we present a theoretical study about the
relative occurrence of LBPs based on the consideration
that the LBP operator partitions the set of grayscale
patterns into an ensemble of disjoint multidimensional
polytopes. We derive exact prior probabilities of LBPs
by calculating the volume of such polytopes. Our study
puts in evidence that both the uneven distribution of
the LBP histogram and the high occurrence of uniform
patterns are direct consequences of the mathematical
structure of the method rather than an intrinsic prop-
erty of real textures.
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1 Introduction

Texture analysis represents a fundamental building block
of many computer vision and image processing applica-
tions. This research topic has received increasing atten-
tion during the last decades, and, consequently, many
approaches have been proposed. Such a vast set of meth-
ods -which has been recently referred to as a “galaxy
of texture features”- includes Julesz textons, Gabor fil-
ters, wavelets, Markov randon fields, co-occurrence ma-
trices, Laws masks, texture spectrum, run lengths, trace
transform and many others. Comprehensive surveys can
be found in literature [35,27,39]. Within this galaxy
the LBP has emerged as one of the most prominent
techniques. The reasons of the success of this method
are basically three: 1) easiness of implementation, 2)
low computational overhead and 3) high discriminative
power. Such characteristics make it an ideal candidate
for many applications, including real-time processing.
Since its introduction [25], the method has been suc-
cessfully applied to many diverse areas of image pro-
cessing: medical and biomedical image analysis [24,31,
12], face and facial expression recognition [1,29,11], fin-
gerprint matching [23], surface inspection and grading
[20,33,9], remote sensing [18], motion analysis and ob-
ject tracking [13,34].

Despite its widespread adoption and the ample lit-
erature, little theoretical investigation has been carried
out on this method. As a result some important ques-
tions still remain unresponded. One of the basic con-
cerns is about the relative occurrence of local binary
patterns. Many experimental results show that local bi-
nary patterns have a markedly uneven distribution in
real textures [21,26,15,9]. Such distribution seems to be
dominated by the so called uniform patterns, namely
those patterns whose number of bitwise 1/0 transitions
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(and vice versa) is at most two. Ojala et al. [26] re-
ported a proportion of uniform patterns ranging from
76,6% to 91,8% in textures picked from the Brodatz
database and from 82,4% to 93,3% in textures picked
from the OuTex database. Recently a similar trend has
been found by Liao et al. [15], who considered textures
from the Brodatz, Meastex and CURet databases.

So far the high incidence of uniform patterns has
been explained in an “objective” way: they would be
fundamental properties of the observed textures corre-
sponding to primitive microfeatures such as corners,
edges, and spots [26]. Herein we look at the problem
from a different perspective and propose an alterna-
tive “subjective” explication: the high occurrence of
uniform patterns might be an intrinsic characteristic
of the method through which textures are analysed. In
order to support this claim we take a closer look at
the rationale behind the method from a mathematical
standpoint. We determine the exact prior probabilities
of local binary patterns under the assumption that the
grayscale values are uncorrelated, and prove that the
uniform patterns have high probability of occurrence.
We propose to regard the LBP operator as a partition
of the set of grayscale patterns into multidimensional
polytopes. Following this approach, the prior probabil-
ities of LBP patterns can be conveniently computed by
calculating the volumes of such polytopes.

The remainder of the paper is organized as follows:
section 2 briefly recalls the basics of the LBP, section 3
describes two alternative methods to evaluate the prob-
ability distribution in the case of the LBP3×3, section
4 extends the evaluation to the case of the LBP8,1, and
section 5 summarizes the main conclusions of the work.

2 The LBP texture model

Detailed descriptions of the LBP method can be found
in various papers [26,19]. Herein, in order to make the
paper self-contained, we just recall the basic concepts
of the method. The approach is based on the concept of
local thresholding: a grayscale window W = {xi ∈ N :
0 ≤ xi ≤ (N − 1), i = 0, · · · , n− 1}, is converted into a
set of binary values B = {bi ∈ {0, 1}, i = 1, · · · , n − 1}
through the following rule:

bi(xi, x0) =
{

1 : xi ≥ x0

0 : xi < x0
(1)

where n is the number of pixels in the window, N the
number of grayscale values, x0 the central pixel of the
window, and N the set of nonnegative integers. There-
fore the LBP defines a mapping from the space of all
the possible Nn grayscale patterns formed by the n pix-
els of the window to the space of all the possible 2(n−1)

binary patterns that can be formed by the resulting bi-
nary values of the n pixels of the window but the central
one. The histogram which quantifies the occurrence of
such binary patterns represents the texture signature.

The original version of the LBP [25] is based on the
28 = 256 possible binary patterns obtainable from a
squared 3 × 3 window when thresholded by the value of
the central pixel (fig. 1). Each pattern can be uniquely
identified through a string of eight binary numbers
b8b7b6b5b4b3b2b1, which represent the pattern “code”.
Following the commonly accepted convention we refer
to this method as the LBP3×3.
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Fig. 1 The LBP3×3 texture model.

Rotation-invariant versions of the method are ob-
tained by grouping together all the binary patterns that
are actually rotated versions of the same pattern. A pre-
liminary step to obtaining rotation invariant versions
consists in converting the original squared neighbour-
hood into a circular one. The gray values of the neigh-
bours that do not coincide with the pixels centers are
estimated through bilinear interpolation [19]. If we ap-
ply it to a 3× 3 window we obtain the LBP8,1 texture
model (fig. 2).
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Fig. 2 The LBP8,1 texture model. Interpolated values are

marked with asterisks.

Having defined these two basic models, we can ob-
tain extended versions by considering different radii of
the interpolation circle and different angular spacing
[26].
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3 Relative incidence of local binary patterns:
the case of LBP3×3

In this section we derive a priori probabilities of lo-
cal binary patterns for the LBP3×3 texture model. The
case of the LBP8,1 is analyzed in section 4. Being inter-
ested in deriving a priori probabilities, we assume we
are given no specific texture to analyse. This lack of
knowledge can be modeled through a non-informative
probability distribution. We make the following assump-
tions:

1. the grayscale values of the pixels in the neighbour-
hood are stochastically independent;

2. the grayscale value is uniformly distributed.

The assumption of uniform distribution is motivated
by two reasons. First, since the main objective of the
paper is to investigate the LBP method itself -regardless
of the image it is applied to- we assume that no a priori
information is given about the underlying image model.
Such a situation is best modelled by a uniform distri-
bution, which is the non-informative distribution par
excellence. Secondly, a texture descriptor, as the LBP
is, can be regarded to as a channel through which we
convey information about the analysed image, where
the pattern distribution is the output and the image is
the input. Therefore studying the distribution of LBP is
the same as studying the channel capacity. From infor-
mation theory we know that the information processed
by a channel (as defined in [2]) depends on the input
distribution, which, in this case, represents the stochas-
tic image model we use for our computations. We may
vary the input distribution until the information pro-
cessed by the channel attains a maximum: the channel
capacity. In this sense the use of the uniform distribu-
tion as universal prior has been sustained by various
authors, most remarkably by Shulman and Feder [30].
They show that the degradation of the mutual informa-
tion with respect to the capacity when using the uni-
form distribution as a prior is minimal in many cases,
and it is at most 6% of the channel capacity. Therefore,
by using the uniform distribution as a prior, we expect
to make the LBP work close to its theoretical capacity,
(i.e. not far from it more than 6%).

In the following computations we consider the grayscale
value both as a continuous and as a discrete variable.

3.1 LBP3×3: the continuous case

The continuous case is actually a hypothetical scenario
since most imaging systems are, nowadays, digital. Such
ideal condition, however, is worth studying, since it rep-
resents a limit as the number of grayscale levels tends

to infinity. In this case the grayscale intensity is a con-
tinuous variable uniformly distributed in [0, 1]: x̄i ∼
U [0, 1], i ∈ {0, · · · , 8}. Throughout this paper we adopt
the convention that the ¯ sign refers to continuous-
valued variables. Moreover, in the following equations,
the subscripts 3×3 and 8,1 are used to tag variables re-
ferred to the LBP3×3 and LBP8,1 texture models re-
spectively.

For a given value x̄0 of the central pixel, the proba-
bility for one pixel of the neighbourhood to take binary
value bv ∈ {0, 1} is:

p̄3×3(bv|x̄0) =
{

x̄0 : bv = 0
1− x̄0 : bv = 1

(2)

Under the assumptions stated at the beginning of
section 3 the probability of occurrence of an LBP3×3

pattern can be modeled as a repetition of independent
trials with probabilities x̄0 for bv = 0 and (1 − x̄0) for
bv = 1. Consequently the a priori probability that a
grayscale pattern maps to an LBP3×3 binary pattern,
for a given value of x̄0, only depends on the total num-
ber of “0s” (or, equivalently, of “1s”) that appear in it,
and can be expressed as follows:

p̄3×3(b8b7b6b5b4b3b2b1|x̄0) = x̄0
k(1− x̄0)(8−k) (3)

where k is the total number of “0s” contained in the
pattern binary string. Under the assumption that x̄0 ∼
U [0, 1], the a priori probability of a pattern is given by:

P̄3×3(b8b7b6b5b4b3b2b1) =
∫ 1

0

x̄k
0(1− x̄0)(8−k)dx̄0 (4)

which can be expressed in closed form:

P̄3×3(b8b7b6b5b4b3b2b1) =
k!(8− k)!

9!
(5)

The corresponding values are reported in table 1 (note
that P̄3×3(k) = P̄3×3(8 − k) due to duality between 1s
and 0s in a binary pattern). The histogram in figure
3 shows the a priori probability of each of the 256 bi-
nary patterns. In this and in the following histograms
we use the convention that green bars indicate uniform
patterns and red bars non-uniform patterns.

Table 1 A priori probabilities of LBP3×3 patterns as a function
of “0s” (k).

k 0,8 1,7 2,6 3,5 4

P̄3x3
1

9

1

72

1

252

1

504

1

630
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Fig. 3 A priori probabilities of LBP3×3 patterns in the contin-

uous case.

3.2 LBP3×3: the discrete case

The formulas derived in section 3.1 can be easily ex-
tended to the discrete case. For a given value x0 of the
central pixel, the probability for one pixel of the neigh-
bourhood to get a binary value bv ∈ {0, 1} is:

p(bv|x0) =


x0

N
: bv = 0

1− x0

N
: bv = 1

(6)

Again, under the assumption that x0 ∼ U [0, (N −
1)], the a priori probability of a pattern is:

P3×3(b8b7b6b5b4b3b2b1) =
1

N9

N−1∑
x0=0

x0
k (N − x0)

(8−k)(7)

We can expand equation 7 to get the probabilities as
a function of N for given values of k (see table 2). As
one would expect such expressions tends to the results
obtained in the continuous case as N → ∞. The his-
togram in figure 4 shows the probability of occurrence
of each of the 256 binary patterns in the discrete case
for N = 256.

We notice that both in the discrete and continu-
ous case the most probable patterns are the flat area
black/white spots (all bits “0” or “1”, respectively). In
the continuous case the distribution is perfectly sym-
metric, as one would expect (fig. 3). In the discrete
case, due to the ≥ in the LBP definition (equation 1),
the white spot pattern is slightly more probable than
its black counterpart (tab. 2, fig. 4).

3.3 LBP as a space partitioning method

In sections 3.1 and 3.2 we derived simple expressions for
the a priori probabilities of LBP3×3 patterns using ele-

Table 2 A priori probabilities of LBP3×3 patterns as a function
of N for given values of k.

k PLBP3x3 (N)

0
1

9
−

1

30N8
+

2

9N6
−

7

15N4
+

2

3N2
+

1

2N

1,7
1

72
+

1

30N8
−

5

36N6
+

7

40N4
−

1

12N2

2,6
1

252
−

1

30N8
+

5

63N6
−

1

20N4

3,5
1

504
+

1

30N8
−

11

252N6
+

1

120N4

4
1

630
−

1

30N8
+

2

63N6

8
1

9
−

1

30N8
+

2

9N6
−

7

15N4
+

2

3N2
−

1

2N
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Fig. 4 A priori probabilities of LBP3×3 patterns in the discrete
case, N = 256.

mentary statistical considerations. In this specific case
our task is made easy by the relatively simple struc-
ture of the LBP3×3 model. With a more complicated
model (e.g., LBP8,1), however, similar expressions are
very hard to find. Therefore in this section we describe
an approach which makes it possible to deal with the
problem in a more general way. We observe that the
LBP operator can be interpreted as a mapping from the
grayscale pattern space to the binary pattern space (fig.
5). As detailed below, such mapping is defined through
a partition of the grayscale pattern space. We would
like to emphasize that local binary patterns should not
be considered as physical entities. They are actually a
way to mathematically formalize the partition of the
grayscale pattern space.

Let’s consider, first, the continuous case. In this sce-
nario the grayscale pattern space is the 9-dimensional
unit hypercube, and a grayscale pattern is just a point
of the hypercube. The set of all the possible LBP3×3
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Fig. 5 The LBP model defines a mapping from the grayscale

pattern space (left) to the binary pattern space (right).

patterns introduces a partition of the hypercube, each
part P̄ being defined as follows:

P̄3×3(b8b7b6b5b4b3b2b1) =

=
{
x̄ ∈ R9 : 0 ≤ x̄i ≤ 1, Ax̄ ≥ 0}

(8)

where:

A =


A10 A11 0 0 · · · 0
A20 0 A22 0 · · · 0
. . . . . . . . . . . . . . . . . . . . .
A80 0 0 0 · · · A88

 ; (9)

Aij =


1 : bi = 0

−1 : bi = 1
, j = 0

−1 : bi = 0
1 : bi = 1

, j 6= 0

; (10)

x̄ =


x̄0

x̄1

· · ·
x̄8

 ; (11)

and 0 denotes a vector whose components are all 0.
This set of inequalities is usually referred to as the

hyperplane description of a polytope in R9 [5]. There-
fore the problem of computing the a priori probabili-
ties of LBP patterns is the same as computing the vol-
umes of the corresponding polytopes which partition
the 9-dimensional unit hypercube. To get an idea of
the “shape” of the polytopes which correspond to each
LBP3×3 pattern we can plot their graph structure. This
is the set of the 0- and 1-dimensional faces (vertices and
edges) of the polytope. Higher dimensional faces are not
considered in the graph. Figure 6 reports the graphs
of three polytopes as example. The images have been
obtained through the Mathematica implementation1 of
the Avis-Fukuda algorithm [3].

1 http://library.wolfram.com/infocenter/MathSource/440/

Binary code
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Fig. 6 The graph structure of the polytopes corresponding to

the LBP3×3 patterns 00000000, 00000101, and 00001101.

Efficient algorithms exist to compute the exact vol-
ume of polytopes. Herein we used polymake [10], a li-
brary for polytopes manipulation whose algorithm for
volume calculation is based on Fukuda’s cddlib imple-
mentation of the double description method of Motzkin
et al. [22]. Through this library we could verify that the
volumes of the polytopes coincide with the results re-
ported in table 1.

In the discrete domain the same line of reasoning
leads to the problem of counting the number of integer
points in a polytope [32,5]. Consider a generic convex
polytope P:

P = {x ∈ Nn : xi ≥ 0,Ax + tb ≥ 0} (12)

where A is an integral matrix, b an integer vector, t

an integer parameter, and x is the discrete version of x̄
(equation 11). In the above expression the elements of
b represents the upper limits of the xi, and so the effect
of t is that of “inflating”/“deflating” the polytope. The
number of integer points LP(t) in P as a function of t is
a polynomial in t of degree n when P is an integer poly-
tope, and a quasi-polynomial of the same degree when
P is a rational polytope [8,32,5]. These two results are
usually referred to as the Ehrhart’s theorem and the
Ehrhart’s theorem for rational polytopes, after french
mathematician Eugéne Ehrhart, who first inaugurated
the study of this problem.

A polytope as expressed in equation 12 is referred to
as a closed polytope, since it is defined by closed half-
spaces, being all the inequalities in equation 12 loose in-
equalities. In the case of the LBP3×3 it results, from the
definition (equation 1), that the polytope correspond-
ing to a specific pattern is a semi-open polytope [36],
since it is defined both by open and closed half-spaces.
A semi-open polytope is a closed polytope minus some
of its faces. To get an idea of this we can consider, for
instance, a square minus some of its edges, or a cube
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minus some of its faces. A semi-open polytope can be
expressed as follows:

P3×3(b8b7b6b5b4b3b2b1) =

=
{
x ∈ N9 : 0 ≤ xi ≤ (N − 1),

A′x ≥ 0
A′′x > 0

} (13)

where A′ and A′′ are integral matrices. The two in-
equalities that appear in the above equation have the
following meaning: they represent the set of closed (A′x ≥
0) and open (A′′x > 0) half spaces which define the
polytope. Now from [36] (proposition 27) we derive that
{x ∈ Nd : Ax > 0} = {x ∈ Nd : Ax − 1 ≥ 0}, where
1 is a vector whose components are all 1. Now we can
convert the polytope in equation 13 into the following
equivalent representation:

P3×3(b8b7b6b5b4b3b2b1) =

=
{
x ∈ N9 : 0 ≤ xi ≤ (N − 1), Ax + c ≥ 0}

(14)

where A is the same as in equation 10 and c is an 8 ×
1 array whose elements are:

ci =
{
−1 : bi = 0

0 : bi = 1
(15)

In practice c is a slack variable which permits to
treat both strict and non strict inequalities in the same
way: the strict inequality −xi +x0 > 0 is converted into
the equivalent loose inequality −xi+x0−1 ≥ 0. In order
to provide the interested reader with a greater insight
into the notation, we report in extenso the matrices A
and c for a specific pattern. If we consider, for instance
the LBP3×3 pattern 00000101, we have:

A =



-1 1 0 0 0 0 0 0 0
1 0 -1 0 0 0 0 0 0

-1 0 0 1 0 0 0 0 0
1 0 0 0 -1 0 0 0 0
1 0 0 0 0 -1 0 0 0
1 0 0 0 0 0 -1 0 0
1 0 0 0 0 0 0 -1 0
1 0 0 0 0 0 0 0 -1


;

c =



0
-1
0

-1
-1
-1
-1
-1



(16)

It has been shown that Ehrhart’s results also hold
for semi-open polytopes [36]. We also observe that the

polytope in equation 14 can be treated as a paramet-
ric polytope of parameter (N − 1), according to the
definition given by Clauss and Loechner [7].

Counting integer points in polytopes is difficult. When
the dimension is an input variable the problem of de-
tecting a lattice point in polyhedra is NP-hard [16]. For-
tunately in 1993 Barvinok found an algorithm to count
integer points inside polyhedra which runs in polyno-
mial time provided that the dimension is fixed [4]. Later
on the method has been extended to parametric poly-
topes [7], which is the case studied here. The Barvinok’s
algorithm and its extensions represent the basis of some
free libraries to count integer points in polytopes such
as barvinok [38] and LattE [17].

To compute the number of lattice points inside the
polytope in equation 8, we used the barvinok enumerate
program of the barvinok library, which enumerates the
number of lattice points in a polytope as a piecewise
step-polynomial. First of all we observe that the coor-
dinates of the vertices of the polytope in equation 14
can take values 0 or 1, and therefore the polytope is
integral. Consequently we expect the number of integer
points in the polytope to be a polynomial in (N − 1) of
degree 9. The results reported in table 3 confirm that
the number of integer points is indeed a polynomial in
(N−1) of degree 9. Now we can compute the probability
of occurrence of each LBP3×3 pattern by dividing the
number of lattice points in each corresponding polytope
by the total number of points in the 9-dimensional hy-
percube (N9). This leads to the same results reported
in table 2.

4 Relative incidence of local binary patterns:
the case of LBP8,1

In this section we are concerned with the a priori distri-
bution of local binary patterns when the original 3× 3
window is converted into a circular lattice through bilin-
ear interpolation. This is a preliminary step to make the
method robust against rotation. The basic idea is that,
as the texture rotates, the gray values of the neighbour-
hood move along the circle centered on the central pixel.
The resulting model is referred to as the LBP8,1 [26,19].
We remark, beforehand, that converting from a squared
neighbourhood to a circular one introduces an artificial
dependence between the gray values which forces the in-
terpolated points to take gray values “similar” to those
of their neighbourhoods. As a consequence one can rea-
sonably expect a significant change in the probability
distribution, with a higher occurrence of uniform pat-
terns.
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Table 3 Number of lattice points inside LBP3×3 polytopes as a function of the number of levels N , for given values of k.

k L (P3x3(N))

0
1

9
(N − 1)

9
+

3

2
(N − 1)

8
+

26

3
(N − 1)

7
+ 28(N − 1)

6
+

833

15
(N − 1)

5
+ 70(N − 1)

4
+

506

9
(N − 1)

3
+ 28(N − 1)

2
+

239

30
(N − 1) + 1

1,7
1

72
(N − 1)

9
+

1

8
(N − 1)

8
+

5

12
(N − 1)

7
+

7

12
(N − 1)

6
+

7

40
(N − 1)

5 −
7

24
(N − 1)

4 −
5

36
(N − 1)

3
+

1

12
(N − 1)

2
+

1

30
(N − 1)

2,6
1

252
(N − 1)

9
+

1

28
(N − 1)

8
+

1

7
(N − 1)

7
+

1

3
(N − 1)

6
+

9

20
(N − 1)

5
+

1

4
(N − 1)

4 −
11

126
(N − 1)

3 −
5

42
(N − 1)

2 −
1

105
(N − 1)

3,5
1

504
(N − 1)

9
+

1

56
(N − 1)

8
+

1

14
(N − 1)

7
+

1

6
(N − 1)

6
+

31

120
(N − 1)

5
+

7

24
(N − 1)

4
+

13

63
(N − 1)

3
+

1

42
(N − 1)

2 −
4

105
(N − 1)

4
1

630
(N − 1)

9
+

1

70
(N − 1)

8
+

2

35
(N − 1)

7
+

2

15
(N − 1)

6
+

1

5
(N − 1)

5
+

1

5
(N − 1)

4
+

52

315
(N − 1)

3
+

16

105
(N − 1)

2
+

8

105
(N − 1)

8
1

9
(N − 1)

9
+

1

2
(N − 1)

8
+

2

3
(N − 1)

7 −
7

15
(N − 1)

5
+

2

9
(N − 1)

3 −
1

30
(N − 1)

In the LBP8,1 model the interpolated points have
coordinates (±

√
2/2,±

√
2/2). Therefore the bilinearly

interpolated gray value x∗i is [28]

x∗i = w1xmod(i−1,8) + w2xi + w1xmod(i+1,8) + w3x0 (17)

where i = 2, 4, 6, 8 (fig. 2), and:

w1 =
(√

2− 1
)/

2
w2 = 1/2
w3 =

(
1−

√
2
/

2
)2

(18)

In this case no such simple formulas as in the case
of the LBP3×3 can be found. Nonetheless, having es-
tablished the equivalence between local binary patterns
and space partitions, we can still compute the exact a
priori probabilities through the polytope approach. For
this approach to be applied, however, we have to make
another assumption. From equations 17 and 18 it is ev-
ident that, in general, LBP8,1 polytopes are irrational.
Unfortunately there is still no theory to deal with this
class of polytopes [5]. Therefore we consider rational ap-
proximations of the weights w1, w2 and w3 which result
from the assumption

√
2 ≈ 99

70
(19)

We believe that the above approximation, which is
correct up to the fourth decimal digit, has very little
effect on the estimation of the relative occurrence of
LBP8,1 patterns.

4.1 LBP8,1: the continuous case

As in the case of LBP3×3 the set of all the possible
LBP8,1 patterns introduces a partition of the 9-dimensional
hypercube, each part being defined as in equation 8,

Binary code

00000000 00000101 00001101

1

2

3

4
56

19

20

21

1

2

3

45

17

18

19

1

2

3

45

17

18

Fig. 7 The graph structure of the polytopes corresponding to

the LBP8,1 patterns 00000000, 00000101, and 00001101.

where, in this case the matrix A takes the following
form:

A10 A11 0 0 0 0 0 0 0
A20r3 A21r1 A22r2 A23r1 0 0 0 0 0
A30 0 0 A32 0 0 0 0 0

A40r3 0 0 A43r1 A44r2 A45r1 0 0 0
A50 0 0 0 0 A55 0 0 0

A60r3 0 0 0 0 A65r1 A66r2 A67r1 0
A70 0 0 0 0 0 0 A77 0

A80r3 A81r1 0 0 0 0 0 A87r1 A88r2

(20)

where the Aij are defined as in equation 10. Now, bring-
ing together equations 17 - 19, we get the following val-
ues for the integer coefficients r1, r2 and r3:

r1 = 4060
r2 = 9800
r3 = 17919

(21)

As we did in section 3.3 we report the graph struc-
ture of three LBP8,1 polytopes (fig. 7). In this case we
notice that the structures are more complicated than
the LBP3×3 counterparts (fig. 6), which agrees with
the difference in complexity between equations 9 and
20. The histogram of the a priori probability distribu-
tion of LBP8,1 patterns in the continuous case is showed
in fig 8. Table 4 reports the exact values for the three
local binary patterns of fig. 7.
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1 256
0

0.05

0.1

0.15

0.2

Fig. 8 A priori probabilities of LBP8,1 patterns in the continu-

ous case.

1 256
0

0.05

0.1

0.15

0.2

Fig. 9 A priori probabilities of LBP8,1 patterns in the discrete

case, N = 256.

4.2 LBP8,1: the discrete case

The discrete case can be solved through the same ap-
proach used for the LBP3×3 (section 3.3). In particular
equations 14 and 15 still hold, provided that we take
the matrix A as in equation 20.

Table 5 reports the exact a priori probabilities of the
three polytopes shown in fig. 7. Looking at figures 8 and
9 we notice that the probability distribution changes
significantly if compared with the 3×3 model. It is evi-
dent, in particular, the higher occurrence of the uniform
patterns, as detailed in the following section.

4.3 The contribution of uniform patterns

In the preceding sections we have described an approach
to compute the exact a priori probability distributions

of LBP3×3 and LBP8,1 patterns both in the continu-
ous and discrete case. We can now compute the exact
incidence of uniform patterns in these two models. In
table 6 we report the percentage of occurrence of uni-
form patterns for the two texture models in the discrete
case (for different values of N) and in the continuous
case.

Table 6 Incidence of uniform patterns in the LBP3×3 and
LBP8,1 texture models.

N
% of uniform patterns

LBP3×3 LBP8,1

3 56,59198 70,08078

4 55,68389 72,38006
5 55,42405 73,18850

6 55,32865 73,89334

7 55,28726 74,36096
· · · · · · · · ·
64 55,23810 74,87518

128 55,23809 74,88386
256 55,23809 74,88574

∞ 55,23809 74,88667

The results reported in table 6 put in evidence the
high a priori probability of uniform patterns. In the
case of the LBP3×3 such probability is about 55%. This
value rises to about 75 % in the case of the LBP8,1. Such
results suggest that the high occurrence of uniform pat-
terns reported in literature may be a direct outcome of
the intrinsic structure of the method. The results also
confirm our guess that bilinear interpolation produces
a significant increase of the percentage of uniform pat-
terns.

5 Conclusions and future work

In this work we presented a theoretical study about
the occurrence probability of local binary patterns. As
noticed by various authors, such distribution is highly
uneven in real textures, and seems to be dominated
by the so-called uniform patterns. Based on this ev-
idence, we decided to investigate whether such result
should be considered a fundamental property of real
textures or something that logically follows from the
mathematical structure of the method. In order to an-
swer this question we developed an approach to evalu-
ate the a priori statistical distribution of local binary
patterns. The procedure is based on the consideration
that the LBP can be interpreted as a space partition-
ing method. As a consequence the a priori probability
of each pattern depends on the volume of the part it
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Table 4 Exact a priori probabilities of the three LBP8,1 patterns of fig. 7 in the continuous case under the assumption of rational
interpolation weights (equations 18 and 19).

Pattern code Probability

00000000
344746891273556080355382732092933000022940683202690554397230181438690613067784727

1924081986089385261773791551406115480477713193229373977028341133578240000000000000
≈ 0.1792

00000101
43316466689309939151978980193302143018387043655995225793791457821767081

8646448079435116482887105528934777284707283437856410263796838400000000000
≈ 0.0050

00001101
13002077245013305150132914522555458923568696291304578949175215215457419

8646448079435116482887105528934777284707283437856410263796838400000000000
≈ 0.0015

Table 5 Exact a priori probabilities of the three LBP8,1 patterns of fig. 7 as a function of the number of levels N under the assumption

of rational interpolation weights (equations 18 and 19).

N
Pattern code

00000000 00000101 00001101

64
3118238338969334

649
≈ 0.1731

96258479582765

649
≈ 0.0053

27692362324755

649
≈ 0.0015

128
1624469658107347992

1289
≈ 0.1761

47735995000052987

1289
≈ 0.0052

14024790442690437

1289
≈ 0.0015

256
838907467027119809606

2569
≈ 0.1756

24045568889514282403

2569
≈ 0.0051

7141375193636033373

2569
≈ 0.0015

belongs to. We showed that these parts are polytopes
in the 9-dimensional space, and therefore the a priori
probabilities can be computed as the volume of poly-
topes (continuous case) or the number of lattice points
inside a polytope (discrete case).

The results show that the a priori probability of
uniform patterns is rather high: ≈55% in the case of
the LBP3×3. This value increases significantly when
the squared neighbourhood is converted into a circu-
lar one through interpolation, and reaches ≈75% in the
case of the LBP8,1. This result makes sense, since bilin-
ear interpolation forces the interpolated pixels to take
grayscale values similar to those of their neighbours.
In the introduction we mentioned that other authors
reported, with LBP8,1, an incidence of uniform pat-
terns ranging from 76,6% to 93,3% in real textures. If
we compare these values with the theoretical value of
≈75% derived herein, we notice that the incidence of
uniform patterns is even higher in real textures. This
additional proportion of uniform patterns can be easily
explained considering that the theoretical values have
been computed under the assumption that grayscale
values of adjacent pixels are uncorrelated. In real im-
ages it is often observed that pixels at nearby locations
tend to have similar intensity values [6]. This results in
an higher incidence of uniform patterns, since bitwise
1/0 transitions in the peripheral pixels are less probable
than in the theoretical case.

As a general conclusion we can say that the high
occurrence of uniform binary patterns is, to a great ex-
tent, a direct consequence of the inherent structure of
the method. The highly uneven a priori distribution of

local binary patterns might also be a drawback of the
method itself, at least from a theoretical standpoint, for
if we consider each possible pattern a symbol of an al-
phabet, the efficiency is maximum when all the symbols
are equally likely.

An interesting by-product of the investigation pro-
posed in this paper is the interpretation of the LBP as
a space partitioning method. In our opinion the contri-
bution of this is twofold: on the one hand we notice that
other methods, such as, for instance, the ILBP [14] and
the Image Patch-Based Classifiers [37] are based on the
same idea, and therefore can be studied using the same
strategy. On the other hand we believe that the idea
of space partitioning can pave the way for the develop-
ment of new texture descriptors, since the overall prob-
lem can be restated in a different way. Future research,
in fact, might be focused on studying functions that
map grayscale patterns into a lower dimensional space
under the constraint that this mapping maximizes the
theoretical amount of information that can be conveyed
and it is invariant against rotation, grayscale changes
or other transformations.
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gray-scale and rotation invariant texture classification with

Local Binary Patterns. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 24:971–987, 2002.
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