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Abstract

In this paper we present a set of multiscale, multidirectional, rotation-invariant features for colour

texture characterization. The proposed model is based on the ranklet transform, a technique relying

on the calculation of the relative rank of the intensity level of neighbouring pixels. Colour and

texture are merged into a compact descriptor by computing the ranklet transform of each colour

channel separately and of couples of colour channels jointly. Robustness against rotation is based

on the use of circularly symmetric neighbourhoods together with the discrete Fourier transform.

Experimental results demonstrate that the approach shows good robustness and accuracy.

PACS numbers: 07.05.Pj, 42.30.Sy
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I. INTRODUCTION

Texture analysis plays an important role in computer vision. Applications of texture

analysis include satellite image segmentation [1], medical diagnosis [2], content-based image

retrieval [3], defect detection [4], document processing [5] and surface grading [6–8], to

cite some. Within texture analysis, classification is particularly well suited for the automatic

grading of products according to the criterion of “same visual appearance”. For this reason,

an increasing attention from industry has recently emerged, in particular for such products

as ceramic tiles [7], marble and granite tiles [9], parquet slabs [10], etc. Since in real

applications texture images are rarely acquired under invariable viewing conditions, texture

features should be invariant against changes in illumination and viewpoint. Texture analysis

has been traditionally performed over gray-scale images. Nowadays, however, it is widely

accepted that considering colour can lead to better results [11].

Herein we present a set of robust texture features based on the ranklet transform [12], an

image processing technique which considers the relative rank of neighbouring pixels instead

of their values. Extension to colour images is obtained by taking account of inter- and intra-

channel ranklet features. Self-compensation against rotation is achieved by computing the

discrete Fourier transform (DFT) of a set of ranklet features computed from circular neigh-

bourhoods at different rotation angles. The experimental results show that the proposed

approach is robust and accurate in discriminating texture.

The remaining of this paper is organized as follows. After a review of related methods

(section II), in section III we describe the generalized ranklet transform for colour texture

images, and explain how rotation invariance is obtained through DFT compensation of the

feature vector. Experimental results are presented in section IV, followed by conclusions

(section V).

II. RELATED RESEARCH

Texture analysis has been traditionally performed by extracting texture features from the

gray levels of the images, and thus discarding colour information. Many approaches to gray-

scale texture analysis have been proposed in the last three decades. For a comprehensive

review readers are referred to references [13–16]. Recent experimental work put in evidence
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that incorporating colour information into the texture model yields improved performance

[11]. For this reason there has been a growing interest during the last years in extending

traditional gray-scale texture analysis to colour images. Despite many methods for colour

texture analysis have been presented in the last years, there is no general framework to

classify the wide variety of them. Some attempts to provide a general scheme to organize

the various colour texture analysis methods have been published in the past [17, 18]. Un-

fortunately they are getting out of date, and thus do not embrace some of the most recent

approaches. Herein we propose to classify the texture descriptors into three main categories:

spatial, spectral and hybrid.

Spatial methods take into account the relative variation of pixel values in the spatial

domain. Such kind of analysis can be carried out by considering one or more chromatic

channels, and thus the spatial methods can be further subdivided into: single-channel and

multiple-channel. Single-channel techniques are often obtained by straightforward applica-

tion of gray-scale techniques to colour images which are previously converted into single-

channel through colour indexing: the colour histogram undergoes a clustering procedure

which returns a set of most representative colours, and the original colours are replaced by

their indices. The index pattern is then processed as a gray-scale texture. Such methods

are also referred to as sequential approaches [17]. In this context it is worth mentioning the

extension of the co-occurrence matrix to indexed images [19–21]. Multiple-channel meth-

ods consider the spatial structure either within each individual channel or between pairs of

channels. Many of these methods have been obtained as extensions of classical gray-scale

texture descriptors, such as wavelets [22], Gabor filters [23], co-occurrence matrices [17],

Local Binary Patterns [24] and Markov Random Fields [25].

Spectral methods rely solely on the spectral content of the image irrespective of the spatial

distribution and, therefore, they are invariant to any permutation of the position of the pixels

in the input image. Although there are some methods based on the analysis of the actual

spectra [26, 27], most commonly the approaches belonging to this group are focused on the

colour content of the image. Such methods aim at giving a statistical description of the colour

content of an image. To this purpose one can use global statistical parameters (such as mean

value, standard deviation, median, percentiles, etc.) computed directly from the colour data

[7, 26, 28]. Such parameters are usually referred to as soft colour texture descriptors [7].

Alternatively the colour content can be described by estimating its probability distribution.

3



This can be done through full multidimensional histograms, such as the colour histogram of

Swain and Ballard [29], or by considering the colour distribution in each channel ignoring

information about the other channels (marginal histograms) [30, 31]. Other approaches

have also been proposed, such as the one of Paschos [32] which is based on computing

moments from the probability distribution in the chromaticity diagram.

Hybrid methods share properties of both spatial and spectral methods, although they

cannot be considered pure spatial nor pure spectral. There is a wide variety of ways to com-

bine spatial and spectral features into an hybrid model. Such methods include concatenation

of textural and colour features [11, 33], fusion of classifiers [34, 35] and joint distribution

of colour and texture features [36].

Since ranklets are a relatively recent method, the number of papers related to this concept

is rather limited, if compared with other well established methods such as Gabor filters,

wavelets, etc. Nonetheless the interest in ranklet-based methods has constantly increased

during the last few years. Originally introduced by Smeraldi, who proposed the use of

ranklets in face detection [12, 37], the technique has been later applied to computer-aided

classification of mammograms [38–40]. Recently Masotti and Campanini [41] proved the

effectiveness of ranklets in gray-scale texture classification.

In the next section we introduce the basic concepts about ranklets and then describe our

multidirectional and rotation-invariant extension for colour texture characterization.

III. DESCRIPTION OF THE METHOD

The rank transform is a non-parametric local measure of relative intensity: it is defined as

the number of pixels in a region whose intensity is less than the intensity of the central pixel

[42]. Since the rank transform relies on pairwise comparison of pixel values, it is by definition

invariant to any monotonic change in the intensity of the input image. Another important

property is robustness against noise [43]. The rank transform is the basis of a family of

multiscale, orientation-selective, non-parametric features, called ranklets, to emphasize their

close analogy to Haar wavelets [44]. In previous papers ranklets were defined for gray-scale

images by splitting a variable-sized square cluster of pixels into two subsets with the same

cardinality, this pair of subsets being defined differently for the horizontal, vertical and

diagonal directions, which were the only ones considered (Fig. 1). Orientation-selective
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analysis was then attained by measuring the relative frequency with which a pixel in one

subset has a gray-scale level higher than a pixel in the other subset, and rotation invariance

by averaging the features resulting from the three configurations of Fig. 1. In order to

achieve rotation invariant ranklet-based features for colour texture, we extended the idea

above in several aspects, which are described in the following subsections.

A. Circular symmetry

It should be noticed that analyzing the subsets of a square cluster of pixels at three

orientations only may result in insufficient texture discrimination capability. To overcome

this limitation, we both increased the number of orientations and used circularly symmetric

clusters, in a similar way to that adopted for Local Binary Patterns [45].

Let’s consider an image of X×Y pixels, and a square window of n×n pixels, being n an

even number. When the image is sequentially scanned with this square window in one-pixel

steps, the number of different positions is Q = (X−n+1)× (Y −n+1). Since n is even, the

successive positions of the center of the cluster and the image pixels do not overlap. In order

to have circular symmetry, we transform the original square window into a circular lattice

(Fig. 2) with the same cardinality (n2). The intensity values of the circular lattice locations

which do not fall exactly in the centre of pixels, are estimated through bilinear interpolation.

In figure 2 it is shown how a 4×4 square window is converted into the corresponding circular

lattice. In this case the locations of the circular lattice lie on concentric circumferences, the

diameters of which are d and 2d respectively, being d the pixel size.

Now let Cn(q) denote the set formed by the radial lattice locations when the scanning

window is in the q-th position, 1 6 q 6 Q. The circular lattice can be split into two subsets

in different ways. Following an approach similar to the one proposed for the original ranklets

[12, 41] we considered the subsets that can be generated by a single split line (fig. 2, left)

and by two orthogonal split lines (fig. 2, right). The orientation of these subsets is defined

by the angle θ formed with the horizontal direction. This way the circular lattice is split

into two disjoint orientation-dependent subsets An,m(q) and Bn,m(q), where the dependence

on size (n), orientation (m) and position (q) has been explicitly specified (Fig. 2). In

our implementation we assume that θ is an integer multiple of a given angle ∆ = π/M ,

being M is the total number of orientations considered. This means that θ = m∆, with
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FIG. 1: The partitions of a 4× 4 cluster into two subsets used in the original gray-scale ranklets.

An,m(q) =
Bn,m(q) =

FIG. 2: The partitions of a 4× 4 cluster into two subsets used in the generalized ranklets.

m ∈ {0, 1, . . . , (M − 1)}.

B. Generalized ranklets

Digital colour images are usually composed of three colour channels, each one containing

the values of the colour coordinates in a given colour space (RGB, HSV, CIE L*a*b*, etc.).

Our generalization of the ranklet transform to colour textures consists in applying the basic

ranklet transform both within and between colour channels in the RGB space. The use of

inter-channel features stems from the opponent process theory of the human color vision.

This model has been first implemented in a colour texture descriptor by Jain and Healey [23].

Later on the same idea was further developed by Mäenpää and Pietikäinen in the Opponent

Colour LBP [46], and by Arvis et al. [19] for the extension of the co-occurrence matrix

to colour images. The rationale behind this method is to mimic the human vision system,

which perceives colours as two opposing pairs: red/green and yellow/blue. In computer

vision this model is generalized by taking into account the three opposing pairs red/green,

red/blue and green/blue [46]. The experimental results (sec. IV) validate the effectiveness

of this model.

Let Ii(l) and Ij(l) denote the intensity levels corresponding to the i-th and j-th channels,
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at a lattice location l, with i, j ∈ {1, 2, 3}. If we now consider a circular lattice of n2 points

and a given angle θ = m∆, the generalized rank transform for scale n and orientation m∆

between the i and j channels at the position q is defined as:

<i,j
n,m(q) =

1

n2/4

∣∣∣∣∣∣
∑

a∈An,m(q)

∑

b∈Bn,m(q)

ξ[Ii(a), Ij(b)]

∣∣∣∣∣∣
(1)

where a and b represent a generic point of the aforementioned subsets An,m(q) and Bn,m(q),

and the function ξ(x, y) is defined as follows:

ξ(x, y) =





−1 : x < y

0 : x = y

1 : x > y

(2)

We can see that (n/2)2 pairs of intensities have to be compared at each window position.

The computational complexity can be reduced from O(N2) to O(NlogN) by considering the

relative rank of pixels instead of comparing their intensity values [41]. The multiplicative

factor in Eq. 1 normalizes the value of the ranklet to [0, 1]. Values close to one are related

to significant gray-scale variation between the two subsets of pixels, whereas values close to

zero indicate no significant difference. It turns out immediately that the generalized ranklet

transform as a function of θ is periodic with period π when the subsets are generated by

one split line, and with period π/2 when the subsets are generated by two orthogonal split

lines.

The generalized ranklets have a straightforward geometric interpretation: in the case of

subsets defined by one splitting line they respond to the presence of edges along the direction

θ; in the case of subsets defined by two orthogonal splitting lines they are sensitive to

corners formed by two orthogonal lines, one of them forming and angle θ with the horizontal

direction. The generalized ranklet transform performs colour texture analysis in two different

ways: when i = j, ranklets encompass the structural information of a single channel, as

gray-scale ranklets do; when i 6= j, they reflect the joint structural information between two

channels.
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C. Feature extraction

Once the generalized ranklets have been computed, the texture features are extracted

from each ranklet transform by taking the mean and the standard deviation of the ranklet

values:

µi,j
n,m =

1

Q

Q∑
q=1

<i,j
n,m(q) (3)

σi,j
n,m =

1

Q− 1

Q∑
q=1

√
(<i,j

n,m(q)− µi,j
n,m)2 (4)

where q denotes a particular position of the center of the cluster during the scanning. The

use of the mean and standard deviation is a common practice in feature extraction. These

statistics are extensively adopted in texture descriptors such as Gabor filters and wavelets,

since they provide, in a compact form, adequate information about the underlying statistical

distribution of the texture features throughout the image. The resulting feature set obtained

for N different window sizes and M different orientations provides multiscale and orientation-

selective texture description.

The above introduced feature set represents an efficient colour texture descriptor. This

texture model, however, is still sensitive to rotation. Let’s consider the effect of rotation

over these features. Let x = [x0, x1, . . . , xM−1] the vector formed by the M ranklet-based

features (mean values or standard deviations) obtained for a given pair of colour channels

(i, j) and a given window size n. For the sake of simplicity, but without loss of generality,

we dropped the i, j and n dependence from the above expression. As a result of the features

definition, if we rotate a texture by an angle ∆ and compute the same ranklet-based features

over the rotated texture, the resulting vector x′ will be circularly-shifted by one position:

x′ = [x1, . . . , xM−1, x0].

As a consequence, sensitivity against rotation can be removed by taking the discrete

Fourier transform of the feature vector x. If X = [X0, X1, . . . , XM−1] is the DFT of vector

x, a circular shift to x corresponds to multiplying the complex coefficients Xk by a linear

phase factor. Hence, the modulus of the transformed coefficients |Xk| is independent of

any circular shift of the input vector x. In addition we know that the DFT output is half

redundant, and therefore we get the complete information by looking at the first [(M/2)+1]
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elements of the transformed vector [47], where [·] denotes “integer part of”.

Thus the rotation-invariant feature vector representative of a colour texture is as follows:

r =
[
Φi,j

1 , · · · ,Φi,j
N ,Ψi,j

1 , · · · ,Ψi,j
N

]
(5)

where Φi,j
n and Ψi,j

n are the vectors formed by the modulus of the first [(M/2) + 1] terms of

the DFT of µi,j
n = [µi,j

n,0, µ
i,j
n,1, . . . , µ

i,j
n,M−1] and σi,j

n = [σi,j
n,0, σ

i,j
n,1, . . . , σ

i,j
n,M−1] respectively.

For a 3-channel image, we have six possible channel combinations, namely (i, j) ∈
{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)}, the first three ones corresponding to the intra-

channel case, and the remaining to the inter-channel case. If we perform multiscale analysis

for N different values of n, and orientation-selective analysis for M1 different angles of sub-

sets defined by one split line and M2 different angles of subsets defined by two split lines,

the resulting dimension of the feature space is given by:

p = 2× 6×N ×
(

[
M1

2
+ 1] + [

M2

2
+ 1]

)
(6)

IV. EXPERIMENTAL RESULTS

FIG. 3: The 45 colour texture images used in the experiments.

To assess the performance of the proposed feature set, we carried out a texture classi-

fication experiment. Our benchmark data consists of 45 colour textures from the Outex

library (fig. 3). The textures used here are a subset of the group inca 100dpi. The data-

base is composed of hardware-rotated versions of the 45 texture images taken at 9 different
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orientations, namely 0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ (which are the only available

orientations in the OuTex database).

As a first step the original RGB images have been converted into the sRGB colour space.

This colour space possesses two desirable features: 1) it is device independent, and 2) it

has been adopted as the default colour space for the internet [48]. The use of a device-

independent colour space eliminates the bias which affects device-dependent data. In order

to convert the original RGB data to the sRGB space we developed a colour calibration

procedure which takes as input the spectral sensitivity of the camera and the spectra of the

illuminant used for image acquisition (data available at http://www.outex.oulu.fi). For a

detailed description of the method readers are referred to reference [49].

After the colour conversion step, each texture image was subdivided into 16 non-

overlapping sub-images, resulting in a database of 45 × 16 × 9 = 6480 texture samples,

720 for each rotation angle. In order to assess robustness against rotation, we conducted a

separate classification trial for each rotation angle in the following way:

• We randomly split the 16 samples of each texture class into two groups of 8 tex-

ture samples each: one for training and the other one for testing. The 8 tex-

ture samples used for training are always picked from the 0◦ group, while the

8 texture samples for testing are picked from the α-degree group, where α =

{0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}. For each angle this results in a training set

of 45 × 8 = 360 non rotated texture samples, and a test set of 45 × 8 = 360 rotated

texture samples. This procedure is usually referred to as split-half validation [50].

• The samples of the test set are classified according to the nearest neighbour rule

with the “Manhattan” (L1) distance, and the percentage of correct classification is

evaluated.

• In order to obtain a stable error estimation the random subdivision into train set and

test set is repeated 100 times, and the average classification accuracy over the 100

problems is retained.

Table I resumes the results of our approach. In order to separately validate the effects of

the inclusion of inter-channel features compared to intra-channel features, we implemented

three versions of the generalized ranklets: a single-channel version (used with gray-scale
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images), a version with intra-channel features only and a version with intra-channel and

inter-channel features. Moreover, in order to validate the rotation-invariance introduced

through the DFT, we reported the results obtained both with and without DFT normaliza-

tion. In all cases the texture features are based on generalized ranklets with three resolutions

(n = 4, 6, 8). For each resolution orientational selectivity is taken into account by consid-

ering six subsets generated by a single split line θ = {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} (hence

M1 = 6 in eq. 6) and three subsets generated by two orthogonal split lines θ = {0◦, 30◦, 60◦}
(hence M2 = 3 in eq. 6). Due to the periodic nature of the generalized ranklet transform,

it suffices to take 0 ≤ θ < π in the case of single-line split and 0 ≤ θ < π/2 in the case of

double-line split. This results in 54 features for each channel. When DFT is applied the

number of features (eq. 6) reduces to 36.

TABLE I: Experimental results. Percentage of correct classification.

Method DFT Col. space Dim. Mean Std 0◦ 5◦ 10◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Gener. ranklets NO GRAY 54 43,7 13,2 57,9 58,7 57,0 54,6 41,0 34,4 29,8 30,3 29,6

Gener. ranklets YES GRAY 36 58,5 2,2 59,7 61,1 59,6 60,0 60,6 58,2 55,8 55,7 55,9

Gener. ranklets / intra-channel NO sRGB 162 62,3 16,5 79,6 78,8 78,7 77,5 62,5 51,5 45,7 43,8 42,9

Gener. ranklets / intra-channel YES sRGB 108 82,6 2,1 83,7 84,0 84,7 84,4 84,3 82,5 80,8 79,6 79,5

Gener. ranklets / intra- and inter-channel NO sRGB 324 93,2 3,7 96,4 96,6 96,3 96,0 95,1 91,6 90,1 88,7 87,5

Gener. ranklets / intra- and inter-channel YES sRGB 216 96,2 0,7 97,0 96,8 96,7 96,9 96,3 95,5 96,2 95,3 95,1

In order to put our results in the context of related work on the subject, we compared

them with the results obtained through a set of ten alternative methods: four pure textural

methods, and six joint colour texture descriptors, two for each of the three groups described

in section II. The results are summarized in table II.

The pure texture methods cover the original ranklet features presented in [41], and

the classical methods of Gabor filters, co-occurrence matrices and Local Binary Patterns

(LBP). The original ranklet features are computed using same three resolutions used for

the generalized ranklets (n = 4, 6, 8). Gabor filters settings are the same used in [51], and

rotation invariance is obtained through DFT normalization [47]. Co-occurrence matrices

have been implemented adopting the same displacement field and the same features used

in [19], and rotation invariance is obtained by summing up the resulting matrices. LBP is

used in the rotation-invariant version LBPri
8,1 [45].
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TABLE II: Experimental results. Comparison with other methods.

Method Col. space Dim. Mean Std 0◦ 5◦ 10◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Texture only

Original ranklets GRAY 18 54,6 2,6 53,1 54,8 53,0 49,5 58,3 56,5 56,5 54,3 55,2

Gabor filters GRAY 48 47,6 2,8 47,5 47,5 47,7 47,8 52,7 45,4 48,9 42,3 49,1

LBP GRAY 36 70,9 1,1 70,8 70,5 69,3 70,6 72,4 71,3 71,8 72,0 69,2

Co-occurrence matrices GRAY 5 42,2 1,5 42,2 40,7 39,5 42,9 42,8 41,5 44,0 44,1 42,3

Spectral methods

Colour histogram sRGB 512 92,2 0,3 92,1 92,1 91,8 91,9 92,5 92,0 92,7 92,5 92,2

Chromaticity moments xyY 10 77,4 1,7 79,1 77,7 78,2 78,5 78,4 78,7 76,4 75,1 74,3

Spatial methods

Multispectral Gabor filters with opponent col. sRGB 96 84,3 1,2 84,0 84,0 84,0 84,3 86,6 83,2 85,3 82,6 84,5

Multispectral co-occurence matrices sRGB 30 90,4 0,6 90,1 89,2 90,2 90,7 90,2 91,0 90,8 91,0 90,4

Hybrid methods

Gabor filters + HLS statistics GRAY + HLS 52 77,4 1,9 77,8 77,8 77,8 76,1 80,5 75,6 79,1 74,2 77,9

LBP + RGB Centiles GRAY + sRGB 51 94,4 0,8 93,6 93,6 93,6 94,5 94,1 94,3 95,3 95,9 94,2

The spatial group of joint texture and colour methods include two approaches that extend

these two methods to colour images. In the case of Gabor filters we adopted the opponent

colour approach proposed by Jain and Healey [23] along with DFT normalization to ensure

rotation invariance. In the case of co-occurrence matrices we used the multispectral method

proposed by Arvis et al. [19].

The spectral methods group encloses the classical colour histogram method of Swain

and Ballard [29], and the chromaticity moments proposed by Paschos [32]. The colour

histogram was computed using a uniform subdivision of each axis of the colour space in 8

intervals. For the chromaticity moments we used 5 T-type and 5 D-type moments (referred

to as the setting “CM55” in [32]).

In the hybrid methods group we considered two approaches were textural features com-

puted from gray-scale images are concatenated with colour features. The first one [33] is

based on Gabor features (herein computed again with the same settings used in [51]) and

colour statistics extracted from the hue and saturation channels of the HLS colour space.

The second one [10] is based on concatenating LBP features (herein we used the rotation

invariant version LBPri
81 [45]) and colour centiles.

The results reported in tables I and II confirm the positive effect of orientational selec-
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tivity in gray-scale texture classification in comparison with the original implementation

[41] (mean accuracy 58,5% vs. 54,6%) together with a better rotation invariance (standard

deviation 2,2 vs. 2,6). From the experimental results it also emerges the beneficial effect

of including intra-channel features compared to single-channel (gray-scale) features (82,6%

vs. 58,5%), as well as the advantage of considering both intra- and inter-channel features

instead of intra-channel features only (96,2% vs. 82,6%). This finding is in agreement with

the results obtained by other authors with different methods [19, 23]. Another important

outcome is the positive effect of DFT normalization on invariance against rotation. Com-

parison with other methods (table II) shows that the generalized ranklets approach is more

accurate than the other methods used for comparison. It should be noticed that feature

extraction in the proposed method -as in any other rank-based method- is computation-

ally intensive, since sorting of gray levels is a time consuming operation. It is also worth

mentioning that the dimension of the feature space is higher than most of the other tex-

ture descriptors considered for comparison, which consequently leads to slower classification.

In conclusion it turns out that the approach proposed here is computationally demanding

but markedly more accurate than the methods considered for comparison. A remarkable

exception is the LBP + RGB centiles descriptor, which achieves a lower -yet comparable-

accuracy with approximately four times less features.

V. CONCLUSIONS

In this paper we introduced a set of rotation-invariant features based on ranklets for colour

texture description. Extension to colour images is obtained by considering inter-channel and

intra-channel ranklets. Rotation invariance is based on the use of multidirectional circularly

symmetric neighbourhoods whose response is compensated against rotation through the

discrete Fourier transform. The experimental results show that this feature set provides

very high classification accuracy.
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