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Abstract

Gabor features are widely adopted in texture classification, and have proven to give good results in many
applications [2]. Unfortunately, in their original formulation, they are not rotation-invariant. This restricts their
possible fields of usage.

Various methods have been proposed, in the past, to attain rotation-invariant Gabor features. Among
them, the most common are: the brute force approach, where all the possible shifts of the feature vector are
computed to find the best match between the texture to classify and the training textures [23]; the circular shift
approach, where the feature vector is re-oriented based on the ‘dominant’ orientation [16, 1]; and the total
energy approach, where features pertaining to the same frequency and different orientations are summed up
to provide rotation invariance. As detailed in the paper, however, the above mentioned approaches present
some theoretical and practical drawbacks that may reduce their effectiveness. In this work we focus on a
method to achieve rotation invariant texture classification based on computing the Discrete Fourier Transform
(DFT) of Gabor features. Since rotating the original textures produces a circular shift of the Gabor feature
vector, the basic idea behind this method is that the circular shift can be converted into a phase shift through
the DFT. The phase shift does not affect the magnitude of the transformed coefficients which can be used as
rotation-independent representation of textural data. This approach was originally proposed in [12]. Herein we
investigate the rationale behind this method and carry out a critical comparison with the other approaches. An
extensive experimental campaign was conducted over a database of 120 homogeneous textures of different
types. The texture images were considered at nine different rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦,
75◦ and 90◦). The results show that the approach based on the DFT gives very good results in comparison
with the other methods.
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1 Introduction

Texture analysis plays an important role in many
activities, such as medical imaging, remote sensing,
surface inspection, image retrieval and others. Within
texture analysis, classification has recently received
great attention, due to its several applications in in-
dustry. Texture classification techniques are very at-
tractive for industrial applications, especially in those
situations where it is important to group products in
lots according to the criterion of “same visual appear-
ance”. In many industrial areas there is a growing
interest in systems capable of performing such kind
of tasks automatically.

In practical applications it is rare that texture im-
ages are captured under the same rotation angle or

scaling factor. Therefore, for industrial applications to
be effective, it is of great importance that texture clas-
sification is rotation, translation and scale invariant.

In this paper we are concerned with the rotation-
invariant texture classification problem. A simple ap-
proach to achieve rotation invariant texture classifica-
tion starting from Gabor features is described here.

The remainder of the paper is organized as fol-
lows: after a review of some related techniques for
rotation-invariant texture classification (section 2), the
DFT approach is detailed in section 3. Section 4 de-
scribes the experimental activity. The results are then
presented and critically discussed in section 5. Final
considerations are reported in section 6.



2 Related research

The problem of rotation-invariant texture classifi-
cation has been intensively investigated during the
last years. Literature review suggests that rota-
tion invariant texture classification techniques can be
grouped into three main families: pre-processing, in-
processing and post-processing methods. This clas-
sification reflects the fact that rotation invariance can
be pursued before feature extraction, during feature
extraction and after feature extraction.

Pre-processing approaches come into play be-
fore features are extracted from the original images.
Such approaches try to estimate the ‘characteristic’
or ‘dominant’ direction of a texture. Then the tex-
ture is rotated so that its orientation is adjusted to
the estimated dominant direction. Various techniques
for orientation estimation have been proposed in the
past: gradient estimation in the spatial domain [21],
signal power analysis in the frequency domain [3],
autocovariance function estimation [14] and Radon
transform [10, 6]. Such methods present the advan-
tage that they are independent of the feature space,
but they are computationally expensive. Furthermore
there is an intrinsic difficulty in estimating texture ori-
entation, since some textures may not have a domi-
nant orientation, while other textures may have more
than one. As recognized in [10], orientation estima-
tion methods may not work properly with complex tex-
tures, since in such cases there could be ambiguity in
the estimation of the dominant direction.

In-processing approaches try to adopt feature
extraction methods which are intrinsically rotation-
invariant. Rotation-invariant formulations have been
proposed for various feature spaces: co-occurrence
matrices [18], Local Binary Patterns [13] and wavelets
[4, 5]. Rotation-invariant formulations have also been
proposed for Gabor filters. In [9] an orientation-
independent formulation of Gabor filters is discussed
where the directional harmonic component of the filter
is replaced by a circular symmetric wave.

Post-processing approaches aim at obtaining ro-
tation invariant feature vectors once they have been
calculated. In this work we focus on these techniques,
since the solution proposed here falls in this category.
Moreover we restrict literature review to approaches
that apply to Gabor features.

The main concern in pursuing rotation invariant
classification with Gabor features is that they change
as the original texture rotates. This is a common char-
acteristic of many other features that can be used in
texture classification. However Gabor features exhibit
a specific behaviour that can be exploited to achieve
rotation-invariant classification. It has been demon-
strated that a rotation of the original image corre-
sponds to a circular shift of the components of the Ga-
bor feature vector at the same frequency [23]. Based

on this result, it is possible to adopt one of the follow-
ing strategies:

• to compute a set of Gabor features which does
not circular shift as the original images rotate;

• for each texture to classify, try all the possible
shifts of the feature vector to find the best match
(minimum distance) between the texture to clas-
sify and the training textures;

• for each texture to classify, search for a partic-
ular trait of the feature vector and use it as the
‘origin’ of the feature vector, then reorient the
feature vector.

The first strategy has been exploited by various
authors [8, 19]. We refer to this family of strategies
as total energy approaches, since they rely on the
idea that, even if the energy of Gabor filter response
changes from one orientation to another, the total en-
ergy of the response at a fixed frequency tends to
be quite constant. Based on this concept rotation-
invariant features can be estimated either by sum-
ming the response of each filter with different orienta-
tions at each frequency [8], or by adopting circularly-
symmetric (ring-shaped) filters in the frequency do-
main [19].

The second strategy is often referred to as the
brute force approach. Since it requires extensive cal-
culation, research activity has been mainly focused
on the first and third approach.

Within the last family the so called circular shift
has emerged as the leading technique to achieve
rotation invariant classification from Gabor features.
This procedure consists in calculating the total energy
of each orientation. The orientation with the highest
total energy is called the ‘dominant’ orientation. Then
the feature element which corresponds to the domi-
nant direction is moved as the first element of the fea-
ture vector. The other elements are circularly shifted.
This process of reordering the feature vector is usu-
ally referred to as normalization. The circular shift
technique has been originally presented in [23], and
it has been further investigated in [1] and [16]. This
technique can be considered as ‘a posteriori’ estima-
tion of the dominant orientation of a texture.

For the circular shift approach to work well two as-
sumptions have to be satisfied:

• it is possible to identify the dominant direction
of a texture;

• the dominant direction is unique.

The above assumptions may be satisfied in many
cases, but in others they may be not. If a texture
does not have a dominant direction (anisotropic tex-
tures), searching the orientation with the highest total



energy may be error prone and noise sensitive. If a
texture has more than one dominant direction the cir-
cular shift may also fail. Examples of such textures
and deeper considerations on this topic can be found
in [10].

In the following section we describe an alternative

approach for rotation invariant feature normalization
based on the Discrete Fourier Transform of the Ga-
bor feature vector. As detailed in the remainder of
the paper, the DFT exhibits interesting properties that
makes it a good candidate for achieving rotation in-
variant normalization.

3 DFT approach for rotation invariant texture classification

The basic idea is to obtain a rotation invariant fea-
ture vector through the Discrete Fourier Transform.

We first recall Gabor features and their properties and
then describe the procedure for feature normalization.

3.1 Gabor features

A two-dimensional Gabor filter consists of a sinu-
soidal wave modulated by a gaussian envelope. It
performs a localized and oriented frequency analysis
of a two-dimensional signal. The formulation in the
spatial domain is the following:

ψ(x, y) =
F 2

πγη
e
−F 2

[(
x′
γ

)2
+

(
y′
η

)2
]
ei2πFx′ ; (1)

with: {
x′ = xcosθ + ysenθ
y′ = −xsenθ + ycosθ

(2)

where F is the central frequency of the filter, θ is the
angle between the direction of the sinusoidal wave
and the x axis of the spatial domain, γ and η the stan-
dard deviations of the gaussian envelope respectively
in the direction of the wave and orthogonal to it. In the
frequency domain the Gabor filter gets the following
form:

Ψ(u, v) = e
− π2

F2

[
γ2(u′−F)2

+η2v′2
]
; (3)

with: {
u′ = ucosθ + vsenθ
v′ = −usenθ + vcosθ

(4)

A generic Gabor filter ψF,θ with frequency F and
orientation θ is applied to an image I through a con-
volution:

WF,θ(l,m) =
∫
I(l1,m1)ψ∗

F,θ(l−l1,m−m1)dl1dm1

(5)

where WF,θ(l,m) is the transformed image at fre-
quency F and orientation θ (∗ denotes the complex
conjugate).

Each transformed image is then characterized by
some statistical indicators. Most commonly such in-
dicators are the mean value µ and the standard de-
viation σ of the magnitude of the transformed coeffi-
cients:

µF,θ =
∑L

l=1

∑M
m=1 |WF,θ(l,m)|
LM

(6)

σF,θ =

√∑L
l=1

∑M
m=1 [|WF,θ(l,m)| − µF,θ]

2

LM
(7)

A Gabor filter bank with P frequencies
Fp = {F0, · · · , FP−1} and Q orientations θq =
{θ0, · · · , θQ−1} gives a feature vector that is usually
arranged as follows:

V = {µF0θ0 , σF0θ0 , ..., µF0θQ−1 , σF0θQ−1 , ...,

..., µFP−1 , σθQ−1} (8)

Gabor filters are widely adopted in texture classi-
fication. It can be shown that the Gabor representa-
tion is optimal in the sense of minimizing the joint two-
dimensional uncertainty in space and frequency [11].
This characteristic suggests that Gabor filters may be
appropriate operators for tasks requiring simultane-
ous measurement in the two domains [15]. Moreover
Gabor filters seem to have important relations with the
vision system of mammals. It has been shown that
the response of cortical simple cells devoted to the
processing of visual signal can be approximated with
Gabor functions.

3.2 Effect of texture rotation on Gabor features



For sake of clarity and without loss of generality,
we can stack the feature vector V of equation 8 into a
matrix of Gabor features in the following way:

[M] =



µF0,θ0 · · · µF0,θQ−1

µF1,θ0 · · · µF1,θQ−1

· · ·
µFP−1,θ0 · · · µFP−1,θQ−1

σF0,θ0 · · · σF0,θQ−1

σF1,θ0 · · · σF1,θQ−1

· · ·
σFP−1,θ0 · · · σFP−1,θQ−1


(9)

Now let’s indicate with x = {x0, · · · , xQ−1} the
generic row of the matrix [M]. It is known [16, 23, 1]
that a rotation of the input texture produces a circular
shift of the vector x: if the input image rotates by π/Q
radians, the generic x vector theoretically changes
to x̃ = {xQ−1, x0, x1, · · · , xQ−2}. For such reason
Gabor features are not rotation invariant. Measuring
the distance between textures in the feature space is
likely to produce incorrect classification. Similar tex-
ture images with relative rotation will be classified er-
roneusly.

3.3 Rotation invariant Gabor features

In order to obtain rotation-invariant features, we
compute the Discrete Fourier Transform of the origi-
nal feature vector x:

Xk =
Q−1∑
q=0

xqe
− 2πi

N kq; k = {0, · · · , Q− 1} (10)

The output of the DFT is a vector X of complex num-
bers. Applying a circular shift to the input vector x by l
points corresponds to multiplying the Discrete Fourier
Transform X by the linear phase factor e−i 2πk

N l [17].
The modulus of the transformed coefficients Xk, is
not affected by such multiplication, and thus the vec-
tor |X| = {|X0|, · · · , |XQ−1|} is independent of any
circular shift of the input vector x. Moreover, being
x a vector of real values, the vector X is hermitian
symmetric:

Xk = X∗
k−q; k = {0, · · · , Q− 1} (11)

As a consequence the DFT output is half redundant,
and we get the complete information by looking at the
first bQ/2c + 1 elements of the transformed vector.

The rotation invariant version [MI ] of the matrix
[M] is obtained by computing the DFT of each row of

the matrix [M], and retaining only the first bQ/2c + 1
elements:

[MI ] =



X0,µF0 · · · XQ′,µF0

X0,µF1 · · · XQ′,µF1

X0,µFP−1 · · · XQ′,µFP−1

· · ·
X0,σF0 · · · XQ′,σF0

X0,σF1 · · · XQ′,σF1

· · ·
X0,σFP−1 · · · XQ′,σFP−1


(12)

where Xi,µFp
represents the magnitude of the j − th

spectral component of the mean value of the Gabor
response at frequency p; Xi,σFp the same spectral
component of the standard deviation of the Gabor re-
sponse at the same frequency. Q′ = bQ/2c.

The effects of switching from the original Gabor
feature space to the transformed space can be ap-
preciated in figures 2 and 3. As an example we con-
sidered here the directional texture shown in figure
1. We can see that different orientation of the texture
produces a circular shift in the original Gabor feature
vector (fig. 2) . The circular shift disappears in the
transformed feature space (fig. 3).

Figure 1: Original texture at 0◦ (left) and at 60◦ (right).

4 Experimental activity
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Figure 2: Gabor features of the texture of fig. 1 (mean value of the Gabor filter response). The (i, j) square is
the response at frequency i and orientation j. A shift along the i direction shows up as the texture orientation
changes from 0◦ to 60◦.
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Figure 3: Gabor features of the texture shown in fig. 1 (mean value of the filter response) after DFT transform.
The (i, j) square is the j−th spectral component of the response at frequency i. We can appreciate that the
shift along the i direction disappeared.

In order to test the effectiveness of the above de-
scribed technique, we carried out an experimental

campaign as detailed here below.

4.1 Experimental dataset

A database of 120 texture images (fig. 4) has
been set-up using the OuTex library [20]. The textures
used here have been selected from the group horizon
100dpi. We decided to use textures from the OuTex
database since it provides hardware-rotated textures,
and thus it permits to avoid texture rotation by soft-
ware. Rotation by software, infact, can introduce ar-
tifacts in the rotated images that may alter classifica-
tion results. In particular it is possible to download
textures rotated by the following angles: 0◦, 5◦, 10◦,

15◦, 30◦, 45◦, 60◦, 75◦ and 90◦. It is worth noticing
that the texture database adopted here is challenging,
since it contains many similar textures.

The size of the original images is 746 x 538 pix-
els. Each original image was subdivided into 12 non-
overlapping sub-images, yelding a database of 1440
texture samples. In the process of composing the
data set we took care in selecting texture images as
uniform as possible. This to avoid mistaken classifi-
cations after image subdivision.

4.2 Feature extraction

Six different Gabor feature spaces, resulting from
three different Gabor filter banks with four frequen-
cies and six, eight and ten orientations, and with six
frequencies and six, eight and ten orientations were
used. Based on the results of a previous work [7] we
set the values of the smoothing parameters η and γ
(equations 1 and 3) equal to 0.5. A frequency pro-

gression value of
√

2 (half-octave spacing) has been
used. The central frequency of the filter at the highest
frequency is computed as a consequence, as shown
in [7]. The feature vector is composed of the mean
values and standard deviations of the magnitude of
each transformed image, as in equations 6, 7 and 8.



Figure 4: The 120 textures from the OuTex database used in the experimental activity. Barleyrice{001, 002};
Canvas{003, 004, 006, 008, 009, 011}; Cardboard{001}; Carpet{001, 002, 004, 005, 009}; Chips{001, 006,
009}; Crushedstone{001, 003, 006, 007}; Flakes{003, 004, 008, 009}; Flour{001, 002, 009, 011, 012}; Gran-
ite{001, 003, 004, 006, 007, 008, 009}; Granular{002, 003}; Groats{001, 005, 006, 007}; Leather{003}; Min-
eral{003, 004}; Paper{001, 003, 004, 005, 006, 007, 008, 009, 010}; Pasta{001, 002, 003, 004, 005}; Pel-
let{001}; Plastic{001, 003, 004, 005, 006, 009, 011, 016, 017, 018, 019, 021, 022, 024, 025, 026, 027, 028,
029, 030, 031, 032, 034, 035, 036, 044, 045}; Quartz{001}; Rubber{001}; Sand{001, 002}; Sandpaper{003};
Seeds{001, 002, 003, 004, 005, 006, 007, 008, 009, 011, 012, 013}; Tile{003}; Wallpaper{001, 002, 003, 006,
008, 012, 013, 018, 019}; Wood{003, 004, 005, 007, 008}

.

4.3 Classification and error estimation

Texture classification was performed using the
nearest neighbour rule with the ‘Manhattan’ (L1) dis-
tance.

Classification error has been evaluated by split-
half validation with stratified sampling [22]: the
1440 textures were divided randomly into two non-
overlapping groups of 720 textures each: the train-
ing set and the validation set. For each angle θ
the training set was formed by textures from the
0◦ group, while the validation set was composed
of textures taken from the θ◦ group, with θ =
{0◦, 5◦, 10◦, 15◦, 30◦, 45◦,
60◦, 75◦, 90◦}. The percentage of correct classifica-
tion was defined as the ratio between the number of
textures classified correctly and the number of tex-
tures of the validation set. For each angle the esti-
mated percentage of correct classification was aver-
aged over 100 different random partitions of data into
training and validation set in order to make the esti-
mation stable.

In order to assess the effectiveness of the DFT
method, texure classification was carried out using
five different approaches: original feature space (Ga-

bor features with no modification), total energy, circu-
lar shift, brute force and Discrete Fourier Transform.

In the total energy approach we sum the response
of each filter with different orientations at each fre-
quency [8].

In the circular shift method the dominant orienta-
tion d is computed through equation 13, and the fea-
ture element in the dominant orientation is moved as
the first element of the re-oriented feature vector.

d =
argmax

{0, · · · , Q− 1}

(
P−1∑
i=0

µij

)
(13)

In the brute force procedure, for each texture to
classify, all the Q possible shifts of the feature vec-
tor are considered. The texture to classify is assigned
the label of the training texture that best matches one
of the Q shifts of the original feature vector. In other
words the texure to classify is assigned the label of the
c − th texture of the training set, which is computed
as follows



c =
argmin

r = {0, · · · , R − 1}

{
min

j = {0, · · · , Q − 1}
[D(Vr,Vj)]

}
;

(14)

where R is the total number of training textures, Vr

is the feature vector of the r−th training texture,
D(Vr,Vj) the distance between the r−th training
texture and the j−th shift of the feature vector of the
texture to classify.

5 Results and discussion

Table 1 summarizes, for each filter bank, the re-
sults obtained with different rotation angles using the
four approaches described in section 4.

First of all we notice that, in accordance with re-
lated work [16], the percentage of correct classifica-
tion shows a consistent decrease if rotation-invariant
normalization is not applied. In agreement with the re-
sults found in [7], it emerges that, switching from 4 to
6 frequencies, produces an increase in classification
performance, and that increasing the number of ori-
entations from 6 to 10 does not improve classification
results.

The results show that, in general, the percent-
age of correct classification obtained with the DFT
method is higher than that obtained with the other ap-
proaches.

In figure 5 we plot the percentage of correct clas-
sification averaged over the six Gabor filter banks. It
comes out that, on average, the DFT approach out-

performs the others.
In our opinion such results can be explained by

looking at the intrinsic properties of the method. As
we pointed out in section 2, the main problem which
afflicts methods based on estimation of the dominant
direction (such as the circular shift), is that such di-
rection may not exist or may not be unique.

If we look at the spectral components of the fea-
ture vector we remove this dependency from the dom-
inant direction and, more generally, from any rotation
of the input image.

The total energy approach shows a consistent
lower performance with respect to the other methods.
This can be explained with the reduced capability of
discriminating textures that is a consequence of re-
moving orientation-dependent data from texture de-
scription. In contrast the other methods do not remove
orientation-dependent data, but they re-arrange them
in a different way.
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Figure 5: Percentage of correct classification averaged over the six filter banks.

6 Conclusions

In this paper we have evaluated the effectiveness
of the DFT technique for rotation invariant texture
classification with Gabor features. The DFT method is

simple and easy to implement. It consists in substituit-
ing the rotation-dependent parts of the Gabor feature
vector with their Discrete Fourier Transform, which is



Table 1: Results of the experimental activity.

Filter bank Rotation-invariance method 0◦ 5◦ 10◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

freqs. ornts.
None 77,29 76,85 75,51 69,58 40,93 30,53 26,07 23,43 24,41

Total energy 71,16 70,89 68,25 64,48 53,47 41,27 34,97 32,04 32,02
4 6 Circular shift 74,81 73,52 72,05 66,99 69,06 55,89 60,65 56,18 65,53

Brute force 76,29 76,17 74,42 69,67 71,77 58,90 67,87 58,42 68,03
DFT 75,49 76,47 75,95 76,14 75,00 70,52 70,86 68,82 69,16
None 77,00 76,56 75,09 68,49 41,88 30,06 25,37 23,43 23,80

Total energy 70,09 69,58 66,96 64,63 54,98 45,19 39,24 33,00 31,67
4 8 Circular shift 74,54 73,65 72,21 72,25 67,89 62,92 60,92 61,19 65,43

Brute force 76,68 76,20 74,65 75,06 71,89 67,93 66,51 65,28 67,93
DFT 75,65 76,53 76,27 76,34 75,57 71,55 71,48 69,66 69,74
None 77,15 76,75 75,50 69,72 41,61 30,22 25,40 23,43 23,80

Total energy 72,49 72,45 70,93 67,87 53,53 37,76 31,72 28,91 28,37
4 10 Circular shift 74,93 74,18 73,66 73,54 68,74 62,10 60,61 62,93 65,62

Brute force 76,76 76,55 75,81 76,27 72,06 66,07 66,74 67,23 68,04
DFT 75,82 76,51 76,43 76,49 75,51 71,69 71,64 69,77 69,98
None 83,44 84,22 82,78 79,71 49,62 35,48 29,62 26,12 26,85

Total energy 72,42 72,64 72,98 73,33 74,41 71,49 70,24 68,57 69,26
6 6 Circular shift 81,69 80,96 80,33 78,00 79,17 70,85 73,36 70,19 77,71

Brute force 82,77 83,35 82,16 80,35 82,25 73,26 78,79 71,63 79,18
DFT 82,64 83,04 82,93 83,67 84,02 79,75 79,74 79,44 80,02
None 83,46 83,97 82,99 78,81 49,75 34,80 29,04 26,63 27,07

Total energy 72,35 72,69 72,88 73,22 74,38 71,53 70,27 68,53 69,09
6 8 Circular shift 81,26 80,97 80,94 81,06 79,16 75,01 74,29 73,72 76,73

Brute force 83,04 83,06 82,50 83,44 81,77 78,71 77,94 76,85 78,73
DFT 83,01 83,19 83,17 83,77 83,95 80,39 79,81 80,07 80,19
None 83,48 84,10 82,98 79,81 49,96 34,77 29,25 26,45 27,08

Total energy 72,38 72,71 72,93 73,29 74,37 71,51 70,23 68,56 69,14
6 10 Circular shift 81,29 81,65 81,39 81,09 79,54 74,72 74,62 74,99 77,13

Brute force 83,19 83,33 83,05 83,99 82,14 77,85 77,95 77,81 78,86
DFT 83,06 83,21 83,33 83,85 83,98 80,41 79,84 80,16 80,33

rotation-independent. Algorithms exist for fast calcu-
lation of the Discrete Fourier Transform that makes
the computational cost of the method low. An exper-
imental campaign was carried out to evaluate the ef-

fectiveness of this technique in comparison with exist-
ing methods. The results show that the DFT method
provides better results with little computational effort.
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