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Abstract. The sequential approach to colour texture classification relies
on colour histogram clustering before extracting texture features from
indexed images. The basic idea of such methods is to replace the colour
triplet (RGB, HSV, Lab, etc.) associated to a pixel, by a scalar value,
which represents an index of a colour palette. In this paper we studied
different implementations of such approach. An experimental campaign
was carried out over a database of 100 textures. The results show that
the choice of a particular colour representation can improve classification
performance with respect to grayscale conversion. We also found strong
interaction effects between colour representation and feature space. In
order to improve accuracy and robustness of classification, we have tested
three well known expert fusion schemes: weighted vote, and a posteriori
probability fusion (sum and product rules). The results demonstrate that
combining different sequential approaches through classifier fusion is an
effective strategy for colour texture classification.

1 Introduction

Texture analysis is recognized as a key point in the development of artificial
vision systems. Within texture analysis, classification is a major research topic,
due to the numerous applications in areas like medical imaging, remote sensing,
quality control and others. Texture classification techniques are very attractive
for industrial applications, especially in those situations where it is important to
group products in lots according to the criterion of “same visual appearance”. In
many industrial areas there is a growing interest in systems capable of performing
such kind of tasks automatically.

Texture classification involves two major processes: feature extraction and la-
bel assignment. The whole formed by these two building blocks is usually referred



to as an expert. It is commonly accepted that substantial gain in classification
performance can be obtained by combining the results of individual experts [1,
2]. In this work we adopted different combination schemes for sequential colour
texture classification. The most innovative contributions of this paper are: on the
one hand, the use of colour indexing methods that have not been implemented
yet in colour texture classification by sequential approaches, and, on the other
hand, the combination of sequential colour texture classifiers by classifier fusion.

The remainder of the paper is organized as follows: section 2 describes the
colour indexing approach to texture classification. Feature spaces and classifiers
used in this work are described in section 3. Combination of experts is detailed in
section 4. The experimental activity is described in 5 and its results are presented
and discussed in section 6. Final conclusions are reported in section 7.

2 Colour representation

Several attempts have been made to incorporate colour and texture features
during the last years. Up to now, there has been no general consensus about the
best way to combine these two properties. It is widely accepted that taking into
account colour in texture classification can provide additional information [3].
However some authors argue that colour and texture have to be regarded as sep-
arate phenomena [4]. According to Palm [5], the approaches to combine colour
and texture can be grouped in parallel, sequential and integrative approaches. In
the parallel approach, textural features extracted from the luminance plane are
considered together with pure chrominance features. Sequential methods involve
colour histogram clustering before extracting texture features from indexed im-
ages. Integrative models characterize a texture through spatial interaction within
each color plane and between different colour planes.

In this paper we focus on sequential methods. The basic idea is to replace
the colour triplet (RGB, HSV, Lab, etc.) by a scalar value, which represents an
index of a colour palette. This is usually referred to as colour indexing. The se-
lection of a particular technique for colour histogram clustering should be done
carefully, since it strongly influences the ability of the features extracted from
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Fig. 1. From left to right: original RGB image; grayscale conversion; minimum variance
quantization, colorcube colourmap mapping.



the indexed images to describe colour texture, no matter the feature space con-
sidered. Although there is a vast amount of work on the integration of texture
and colour in a unique model, few implementations of the sequential scheme
have been reported. Song [6] proposed an approach to defect detection in colour
textures based on k-means clustering and perceptual merging. More recently,
Arvis [7] applied uniform quantization of the 3D colour histogram to texture
classification. Uniform quantization involves dividing the color cube into a num-
ber of equal-sized boxes. The effects of representing the original images through
different colour spaces as well as the effects of varying the number of colour
indices have been studied in [8].

Herein we adopted the sequential approach to colour texture analysis, also
referred to as chromato-spatial approach. In addition to the classical grayscale
conversion, we propose minimum variance quantization and colorcube colourmap

mapping as colour indexing techniques. Different colour representations are likely
to produce diverse descriptions of textural data, and thus it makes sense to
integrate them through classifier fusion. One can easily realize from figure 1,
that the transformed images look significantly different from the original RGB
images. Nevertheless, textural data are not lost: they are rather stored in a
different way, as it comes out from the results shown in section 6. Based on such
idea, we integrated colour indexing methods together with grayscale conversion
through different classifier fusion architectures.

In minimum variance quantization the RGB color cube is recursively subdi-
vided into smaller volumes of different sizes (not necessarily cubes). The size of
each cluster depends on the distribution of colours in the image [9]. In contrast,
colourmap mapping uses a predefined colourmap. Each pixel of the indexed im-
age is then assigned the index of the cluster that contains the colour of the
pixel. Applying minimum variance quantization to each image separately does
not seem a promising approach, since the meaning of the resulting indices would
change from one image to another. Instead, we compute the minimum variance
colour map by quantizing the colour distribution of the whole image database
(fig. 2). On the other hand, we have chosen Matlab’s colorcube mapping [10]
since it contains as many regularly spaced colours in the RGB space as possible,
and thus it can work well in the majority of the situations.

3 Classification framework

3.1 Feature extraction

The original RGB images have been converted to single-channel images as de-
scribed in the previous section. Texture features have been extracted from single-
channel images using Coordinated Clusters Representation (CCR), Local Binary

Patterns (LBP) and Gabor filters.
CCR and LBP features represent texture through the histogram of 3x3 binary

patterns [11, 12]. The only difference between LBP and CCR texture models is
that LBP employs a local binarization threshold while CCR uses a global one.



In this work we used as binarization threshold the gray level (or colour index)
which splits the entropy of the histogram of a single-channel image into two equal
parts. This technique is based on the isentropic quantization approach, which has
been successfully applied in the knowledge extraction stage of the construction
of fuzzy sets [13]. The dimension of the CCR and LBP feature space is 512 and
256, respectively.

Gabor features consist of the mean and standard deviation of the output of
a filter bank applied to the input image. Based on the result of previous work
[14, 15], we adopted here a filter bank with 4 frequencies and 6 orientations. The
dimension of the associated feature space is 48.

3.2 Label assignment

Label assignment (usually referred to as classification), is about assigning a class
label to an unknown texture. Many different approaches have been proposed in
literature. For a comprehensive review readers are referred to references [16–18].
Herein we adopted the well known nearest neighbour approach, which assigns a
pattern the class label of the nearest labeled pattern in the feature space.

4 Combination of experts

Combination of multiple experts has recently emerged as a major topic in pat-
tern analysis and machine intelligence. Though numerous approaches have been
proposed and tested, they can be well classified in two main families: fusion of

label outputs and fusion of continuous-value outputs [1, 2].
In the first scenario each expert ek returns, for each point x in the feature

space, a class label j:

ek(x) = j;

{

k = 1, ...,K

j ∈ {1, ..., n}
(1)

where K is the number of experts and n is the number of classes.
In the second scenario each expert produces, for each point x, a vector of a

posteriori probabilities for that point to pertain to one of the possible classes:

ek(x) = [Pk(ω1|x), ..., Pk(ωn|x)] . (2)

Fusion of label outputs is usually based on some voting scheme: majority vote
or weighted majority vote. In the first approach it is assumed that all the experts
are of identical accuracy. In this case each expert gives the same contribution
to the final decision. Weighted voting, instead, tries to give the more competent
experts more power in taking the final decision. Weights are usually based on
some a priori knowledge of experts accuracy.

Three different strategies to combine multiple experts have been considered
here: weighted vote, and fusion of a posteriori probabilities based on sum and
product rule.



4.1 Weighted vote

For weighted vote to be applied, we need a way to estimate the reliability of
each single expert. The accuracy of each expert can be evaluated through its
confusion matrix [19, 20]. The rk

ij element of the confusion matrix represents the
number of samples of class ωi that have been classified of class ωj by the expert
ek. In a perfect expert all the elements outside the principal diagonal of the
matrix should be zero. Given the confusion matrix Rk of an expert ek, an event
ek(x) = j can be described in terms of the conditional probabilities that the
propositions x ∈ ωi are true when the event ek(x) = j occurs:

P (ωi|ek(x) = j) =
rk
ij

∑n

i=1 rk
ij

(3)

In practice each event ek(x) = j gives a different support (or weighted vote) to
each hypothesis x ∈ ωi, i = {1, ..., n}. The total support S(ωi) of a proposition
x ∈ ωi given a set of events ek(x) = j, j = {1, ..., n} and k = {1, ...,K}, is simply
computed as the sum of the support of each classifier:

S(ωi) =
K
∑

k=1

P (ωi|ek(x) = j) (4)

The vector x is then assigned the label with the highest support.
The confusion matrix needs to be computed before classifying. Here we es-

timate the confusion matrix of each classifier through cross-validation using the
points of the training set.

4.2 Fusion of a posteriori probabilities

When different experts provide a posteriori class probabilities , such values can be
combined in different ways to provide a label output. Despite various approaches
have been proposed to this purpose, the simple sum and product rules have been
recognized as reliable and robust [2, 20]. A pattern x is assigned the label j which
maximizes the sum (product) of the a posteriori probabilities provided by each
expert (eq. 5 and 6).

j =
argmax

i ∈ {1, ..., n}

(

K
∑

k=1

Pk(ωi|x)

)

(5)

j =
argmax

i ∈ {1, ..., n}

(

K
∏

k=1

Pk(ωi|x)

)

(6)

In order to quantify a posteriori probabilities (sometimes referred to as mem-

berships), it seems natural to adopt a distance-based normalized similarity mea-
sure: the less the distance between a test point and the nearest labeled neigh-
bour, the highest the probability for that point to belong to the same class of
the closest labeled point. We adopted here the following membership:



Fig. 2. Experimental dataset.

P (ωi|x) =

1

1 + d(x,xi)
n
∑

j=1

1

1 + d(x,xi)

(7)

where d is a generic distance function, and xi is the pattern of class ωi closest
to x in the feature space. Equivalent formulations have been proposed by other
authors [21, 22]. In this work we adopted the L1 (Manhattan) distance.

5 Experimental activity

Combined classifiers have been set up using the different colour conversion ap-
proaches described in section 2 and the CCR, LBP and Gabor feature spaces.
The performance of each single expert and of their combinations has been evalu-
ated over a database of 100 texture classes (fig. 2). Each texture image has been
divided into 16 sub-images, resulting in 1600 texture samples. To assess expert
performance, we considered the percentage of correctly classified textures. Classi-
fication error has been evaluated by split-half validation with stratified sampling
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Fig. 3. Simplified representation of the confusion matrices Rk(i, j) of the various clas-
sifiers. For visualization purposes the main diagonal of each confusion matrix has been
set to 0 (white). Each black point indicates that the k-th classifier makes at least one
mistake in classifying a patterns of class i as a pattern of class j.

[23]. The error is averaged over 100 random partitions of data into training and
validation set in order to make the estimation stable.

6 Results and discussion

The results (table 1) of the experimental activity are suggestive of interesting
considerations. First, it appears that the choice of a particular colour represen-
tation has significant effects on texture classification. It is worth noticing that
switching from grayscale conversion to minimum variance quantization improves
performance in the LBP feature space (87,37 % → 97,27 %), but it drastically
reduces it in the CCR feature space (87,82% → 53,07 %). Second it results that
combining multiple experts provides substantial gain in classification perfor-
mance. The percentage of correct classification shows significant increase either
by adopting different feature spaces -as one could expect- or, more interestingly,
by using different colour representations and the same feature space. The best
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Fig. 4. Representation of the first ten texture classes of the data set of fig. 2 in the
first-two principal components space.

performance is achieved when all the nine possible combinations are employed.
The performance of the best combined expert approaches 100 %. Another in-
teresting result is that classifier fusion appears a robust approach: even if we
include a classifier that provides poor results (i.e. CCR+MINVAR), the global
perfomance is usually better than that of the best clasifier. Only in two cases
we have a very slight reduction: GRAY+MINVAR+COLORCUBE (LBP), from
97.27% to 97.23% (probability fusion, sum rule), and from 97.27% to 97.24%
(probability fusion, product rule). The results obtained with the three different
fusion architectures are essentially the same. Therefore the above conclusions
are valid all the fusion schemes considered in this paper.

7 Conclusions

Fusion of classifiers is supposed to work well when there is a reasonable difference
among the classifiers, or, in other words, when the classifiers do not make the
same mistakes. It is well known that LBP, CCR and Gabor features produce
different representations of textures, as we can appreciate in figures 3 and 4.



Table 1. Performance of single experts and different combinations of experts (ex-
pressed as percentage of correct classification). The numerical results corresponding
to different fusion schemes are shown in different fonts. Normal font: weighted vote;
italics: a posteriori probability fusion (sum rule); boldface: a posteriori probability
fusion (product rule).

CCR LBP GABOR

CCR+

LBP+

GABOR

GRAY 87,82 87,37 88,86

96,40

95,82

95,88

MINVAR 53,07 97,27 78,84

97,88

98,15

97,94

COLORCUBE 87,50 96,14 89,48

97,45

97,57

97,44

GRAY+ 96,91 97,49 97,03 99,35

MINVAR+ 97,04 97,23 97,83 99,14

COLORCUBE 96,92 97,24 97,73 99,18

In this study we have demonstrated that diverse descriptions of textural data
can also be obtained through different colour representations. This fact can be
exploited to improve the overall classification performance by combining multiple
experts that result from different feature spaces and colour representations.
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